
Submitted by
Ramez Elbaroudy

Submitted at
Research Institute for Sym-
bolic Computation

Supervisor
A. Univ.-Prof. DI Dr.
Wolfgang Schreiner

07 2018

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

A Gateway for the
Generic Conversion of
Protocols for Smart Me-
ters and IoT Applications

Master Thesis

to obtain the academic degree of

Master of Science

in the Master’s Program

Internationaler Universitätslehrgang: Informatics:
Engineering & Management

Acknowledgment I

Acknowledgment

In the beginning, I would like to thank Prof. Dr.Dr.h.c.mult. Bruno Buchberger for accepting me in the
ISI program and giving me the opportunity to have my masters degree from Johannes Kepler University
Linz. I would like to thank Prof. Dr. Slim Abdennadher (the Study Dean of Engineering Faculties in
German University in Cairo) for recommending this program for me, and for being motivational and
influential character through out my study at the German University in Cairo.

I would like to express my appreciation and gratitude to my university adviser A. Univ.-Prof. DI
Dr. Wolfgang Schreiner for all the academic efforts and the extremely useful advises in all parts of the
project. I would like to thank Prof. Schreiner for his guidance, patients and assistance in my master’s
project.

I would like also to acknowledge the help of S&T supervisors Mr. Pumberger Ludwig and Mr.
Gaderbauer Helmut, for the constant help, not only providing technical help throughout the different
phases of the project, but also for providing the hardware for the project, namely smart meters and a
laptop.

Our stay in Linz would not have been extremely easy without the help of Mrs. Betina Curtis,
starting from the day of acceptance of the master’s program till the day of graduation. I am grateful to
her careful coordination and organizational skills.

I would like to thank my parents for allowing me to have such an opportunity with non stop en-
couragement and support without which this work would have been impossible.

Last but not least, I would like to thank my dear ISI colleges and friends for the fantastic time
we spent together, and for making our daily life such unique experience, thank you for the amazing
company.

Abstract II

Abstract

In the recent years the number of Internet of things (IoT) devices have increased in a remarkable way.
Due to this increase of devices many challenges have appeared. One of the most markable challenge is
interoperability challenge, where devices use different standards, protocols and conventions to exchange
information. This challenge has appeared because of the different devices’ specifications and the different
manufacturers of the different types of IoT devices. The current thesis proposes a generic API that can
be used for communication with different IoT devices, which use different conventions and protocols;
understanding the underlying conventions or protocols used. In this thesis, we used smart meters as the
IoT devices for testing the generic API. The generic API is first described in an abstract way; then we
describe the Java binding in order to use the API with the Java programming language. The implemented
generic API enables developers to communicate with different IoT devices without the need of knowing the
specification of each protocol. The current thesis can be considered as an important point of extending
the research field of interoperability of IoT devices. Furthermore, the generic API can be extended in
order to support other types of protocols and conventions.

Contents III

Contents

1 Introduction 1

2 Related Work 4
2.1 Context of the Problem . 4

2.1.1 Smart Meters Advantages . 4
2.1.2 Challenges in the Smart Meters Industry . 5
2.1.3 Interoperability Challenge . 6
2.1.4 Protocols Diversity . 6

2.1.4.1 Naming Conventions Diversity . 7
2.1.4.2 Data Types Diversity . 8
2.1.4.3 Units Diversity . 8

2.1.5 S&T . 8
2.2 State of the Art . 9

2.2.1 In Research . 9
2.2.2 In Industry . 11

2.2.2.1 Azure IoT Protocol Gateway . 12

3 Analysis of Protocols 14
3.1 The DLMS/COSEM Protocol . 14
3.2 The DLMS/COSEM Application Layer . 15
3.3 The ANSI C12.18 Protocol . 16
3.4 The ANSI 12.18 Application Layer . 17
3.5 Comparison between DLMS/CSOM and ANSI C12.18 19

3.5.1 DLMS/COSEM . 19
3.5.2 ANSI C12.18 . 20

4 Design of a Generic API 21
4.1 Communication between Data Collection Service and Smart Meters 21
4.2 Interoperability Challenges in Smart Meters . 22
4.3 Gateway Design . 23
4.4 The API Specification . 23

4.4.1 Gateway Data Type . 23
4.4.1.1 getGateway(string gatewayID) . 25
4.4.1.2 getGateway() . 25

Contents IV

4.4.2 Gateway Methods . 25
4.4.2.1 getMeter(string meterID) . 25
4.4.2.2 getAllMeters() . 26
4.4.2.3 getAllMetersByProtocol(Protocol protocol) 26
4.4.2.4 getAllSupportedProtocols() . 26
4.4.2.5 getGatewayID() . 27

4.4.3 Meter Methods . 27
4.4.3.1 getAllRegisters() . 27
4.4.3.2 getManufacturer() . 27
4.4.3.3 getProtocol() . 29
4.4.3.4 getRegister(string registerID) . 29
4.4.3.5 getMeterID() . 29
4.4.3.6 hasRegister(string registerID) . 29
4.4.3.7 openConnection() . 30
4.4.3.8 closeConnection() . 30
4.4.3.9 isWritable() . 30
4.4.3.10 disableManualDisconnect() . 31
4.4.3.11 enableManualDisconnect() . 31
4.4.3.12 breakerClose() . 31
4.4.3.13 breakerOpen() . 32
4.4.3.14 breakerUnlock() . 33

4.4.4 Register Methods . 33
4.4.4.1 getRegisterID() . 35
4.4.4.2 getRegisterType() . 35
4.4.4.3 getRegisterUnit() . 35
4.4.4.4 open() . 35
4.4.4.5 close() . 35
4.4.4.6 read() . 36
4.4.4.7 getMeter() . 36
4.4.4.8 readDouble() . 37
4.4.4.9 readInteger() . 37
4.4.4.10 readBoolean() . 37
4.4.4.11 readLongInteger() . 37
4.4.4.12 readString() . 38
4.4.4.13 readDate() . 38

4.4.5 Protocol . 38
4.4.5.1 VirtualProtocol . 38
4.4.5.2 DLMSProtocol . 39

4.4.6 DataStore . 39
4.5 Generic API Scenarios . 39

4.5.1 Reading Registers . 40
4.5.2 Writing Registers . 43

Contents V

5 Java Implementation 46
5.1 Classes Implementation . 46

5.1.1 Gateway . 46
5.1.2 Meter . 47
5.1.3 Register . 48
5.1.4 Protocol . 49

5.2 Connection with Smart Meters . 50
5.2.1 JDLMS . 50
5.2.2 Bash Command Line Script for ANSI C12.18 Protocol 51

5.3 Exception Handling . 52
5.4 Generic API Demonstration . 53

5.4.1 DLMS/COSEM Demonstration . 53
5.4.2 ANSI C12.18 Demonstration . 54

6 Conclusion 56
6.1 Summary . 56
6.2 Future Work . 57

Appendices 58

A Java Classes 59
A.1 Meter Class Implementation . 59

A.1.1 Meter Interface . 59
A.1.2 MeterFactory Constructor . 60
A.1.3 openConnection() Method Implementation . 61
A.1.4 getManufacturer() Method Implementation . 62

A.1.4.1 getRegister(String registerID) Method Implementation 62
A.1.5 breakerClose()) Method Implementation . 62
A.1.6 enableManualDisconnect() Method Implementation 63

A.2 Register Class Implementation . 63
A.2.1 Register Interface . 63
A.2.2 read() Method Implementation . 65
A.2.3 readDouble() Method Implementation . 65
A.2.4 RegisterType Class Implementation . 66
A.2.5 RegisterUnit Class Implementation . 66
A.2.6 DLMSProtocol Interface Implementation . 66
A.2.7 VirtualProtocol Interface Implementation . 67
A.2.8 GatewayNotFoundException Class Implementation 68
A.2.9 MeterNotFoundException Class Implementation 69
A.2.10 JDLMSClient Constructor Implementation . 69
A.2.11 Batch script for Reading Meter Billing Data . 71

Bibliography 73

List of Figures VI

List of Figures

2.1 Scenario of Using the Gateway in Smart Home (from [38]) 9
2.2 Software Architecture of the Gateway (from [15]) . 10
2.3 Architecture of the Ambient Assisted Living System (from [37]) 12
2.4 Field Gateway and Cloud Gateway Communicating with IoT Hub [24] 13

3.1 Client/server Protocol Stack (from [9]) . 15
3.2 State Machine for the Client Side Control Function (from [9]) 16
3.3 State Machine for the Server Side Control Function (from [9]) 17

4.1 Communication between Data collection service and smart meters 22
4.2 CSV Configuration File with One DLMS/COSEM Smart Meter Supported 23
4.3 State Diagram Showing Different States of Meter . 32
4.4 Relationship between Smart Meter and Registers . 36
4.5 Sequence Diagram Describing Reading Registers . 41
4.6 Sequence Diagram Describing Writing Registers . 44

Introduction 1

Chapter 1

Introduction

After Internet and mobile communication, the Internet of Things (IoT) is regarded as the third wave of
information technology. The Internet of Things allows objects to be sensed or controlled remotely across
existing network infrastructures, creating opportunities for more direct integration of the physical world
into computer-based systems, and resulting in improved efficiency, accuracy and economic benefits in
addition to reduced human intervention; therefore it saves money and time. When IoT is augmented with
sensors and actuators, the technology becomes an instance of the more general class of cyber-physical
systems, which also encompasses technologies such as smart grids, virtual power plants, smart homes,
intelligent transportation and smart cities. A lot of objects and devices are exploited by IoT, such as
cars, televisions, bridges, clothes, smart meters, streets, and cities in order to improve the quality of
life of people using these objects by allowing automation. With the exponential growth of the IoT
objects connectivity, many challenges were introduced to the IoT field, such as security reliability and
fault tolerance. One of the challenges that was introduced to the IoT field is interoperability. With
the increase of the heterogeneous objects that depends on each other, also the connectivity challenges
within the IoT system increased. In addition, IoT devices can collect data in different forms, which
brings different interoperability challenges to IoT system. Also legacy systems such as legacy protocols
add to the interoperability challenge in an IoT system [14].

With the increased cost of energy as well as the concern of global warming the concept of smart
grids has been introduced. A smart grid is an electric grid that includes several energy measures such
as smart meters and renewable energy resources. The advantages of using a smart grid is to reduce the
CO2 emissions as well as to reduce the energy cost for the customer and to ensure sustainability [11][28].

A smart meter is an electronic device that measures the consumption of electricity, gas, and wa-
ter. In general, a smart meter can measure the consumption of combined set of utilities, such as
electricity and gas combined, which saves money, as the owner of the property does not need to
buy several smart meters to measure each utility. Smart meters help in the conservation of energy
as they provide more detailed information compared to classical meters. The energy consumption is
communicated to both the utility service and the customer through a website, in home displays, and
mobile applications [36]. This means that the owner of a smart meter can track down his consumption,
as a motivation for more energy saving. In addition, smart meters allow bidirectional communication;

Introduction 2

therefore not only can the data collection service or the cloud provider can not only receive data from
smart meter, but it can also send data or information to the smart meter. For example, when an
owner leaves the house and new a customer rents the same house, the data collection service can reset
the power consumption measure. Nowadays, smart meters have been deployed in big numbers around
the world [10]. Smart meters have different manufacturers; based on the manufacturer, the protocol
used by the smart meter can be different. Therefore, gateways need to be introduced in order to
ease the integration of the different sensors and convert the different protocols of different devices in
a smart city to an end protocol that will be used for communication with the cloud or service provider [38].

The gateway (also known as a data concentrator) acts as a middle man that supports bi-directional
communication; for example, a utility service could order a specific smart meter to shut down, as the
owner of the smart meter is not currently staying in the house, for example, if he went for a vacation.
In the other direction, the meter sends the energy consumed by the customer to the utility provider.
A gateway should be able to collect data from different meters encrypted and send it to the cloud
provider without decrypting it. The information of several meters should be sent at once to the provider.
According to [15], in Germany the central communication components in the future smart metering
infrastructure will be such gateways.

The main goal of this thesis is to overcome the interoperability challenges by designing a generic
API that will allow developers in the cloud provider side or data collection service to query the smart
meter for data or send data to the smart meter, without knowing the underlying protocol specification
used by the smart meter. There are many components in the smart meter technology specifically and
in IoT application in general that can cause the interoperability issues. In this thesis, we overcome
the different types of challenges related to incompatibility of smart meters connection with the data
collection service. One of the main causes of the interoperability issues, is that smart meters use different
protocols and there does not exist a unified protocol that is used by the smart meter technology.

To approach the goal of the thesis, we first examined and investigate different protocols used by
smart meters. In this thesis we were using two different protocols smart meters, namely DLMS/COSEM
and ANSI C12.18 smart meters. We examined the application layer in both protocols and compare their
features in details. Then, after collecting the information regarding both protocols, we designed a generic
API. Which covers the features of both the DLMS/COSEM and the ANSI C12.18 protocol. In order
to implement the generic API we designed several objects, data structures and algorithms in order to
overcome the interoperability issue. In particlare, we designed a data structure, namely dataStore that
is used in the implementation of the generic API to overcomes the data type issue that occurs within
smart meters.

The remainder of this thesis is as follows. In Chapter 2, we discuss in detail the related work
with an explanation of the context of the problem in details; in particular we investigate some of the
solutions proposed either in research papers or in the industry to solve the interoperability issues of
IoT devices. In Chapter 3, we investigate both types of protocols used in the project and explain the
application layer as well as the features of each protocol. In chapter 4, we describe the suggested generic
API in abstract way, by the building blocks of the API, without specifying either the implementation

Introduction 3

or the binding to a programing language. In Chapter 5, we describe the binding of the generic API to
the programming languages, Java. Finally in Chapter 6 we give a summary and suggestions for future
work.

Related Work 4

Chapter 2

Related Work

This chapter presents an overview of the basic concepts covered in this thesis. At the beginning, we are
going to discuss the context of the problem. Then, the chapter gives an overview of the projects related
to this work whether in industry or in research.

2.1 Context of the Problem

Nowadays the number of IoT devices have been increasing tremendously, this increase will only keep
accelerating. Smart meters are IoT devices that measure energy consumption at any part of time and are
capable of sending recorded information to other devices. Smart meters are one of the key components
in smart city concept. According to [4] by 2020 the European union aims to change a minimum of 80%
of electricity meters with smart meters, as this will reduce energy bills, which saves money for consumers
[4]. In 2014 the European commission reported that around 200 million smart meters for electricity
and gas will be disturbed by 2020 in the European union which has potential investment of €45 billion
[4]. In this section we will discuss the differences between smart meters and regular meters, highlighting
the advantages of using smart meters; then we will discuss the challenges that face the smart meters
industry.

2.1.1 Smart Meters Advantages

One of the key difference between smart meters and regular meters is that smart meters are capable
of sending the information recorded by the meter at any time to other devices [11]. Therefore, the
energy consumer can have the data related to his consumption using tracking device, such as mobile
devices. This feature allows user to monitor frequently his energy consumption, thus the meter creates
self awareness about the consumption and can help in reducing it. Smart meters measure the energy
consumption more often than regular meters and send reports of energy consumption more frequently, at
least once a day. Another key feature of smart meters is the two way communication channel between a
smart meter and a data collection service, which allows the data collection service to send information to

Related Work 5

the smart meter [11]. One application where this feature can be useful is that when a person leaves the
house for vacation, the data collection service can turn off the meter till the person comes back to the
house. In general, smart meters can measure electricity, water, or gas depending on the manufacturer
of the smart meter. The key advantages of using smart meters over regular meter are highlighted below
[19]:

• Smart meters allow consumers to access the data for managing their energy usage.

• Smart meters measure highly accurate billings compared to regular meters.

• Smart meters offer effective outage repair.

• Smart meters allow different rates tariff options for the consumer.

• For service provider, smart meters eliminate manual reading, and its expenses.

• Data collection services will have access to more data for further studies.

• Utility providers have the ability to remotely connect and disconnect the smart meters.

• Smart meter systems support further programs of large smart grid and smart city initiatives, which
will have environmental benefits.

2.1.2 Challenges in the Smart Meters Industry

With such an increase of smart meters, whether for gas or for electricity, several challenges have appeared
for the smart meter’s manufacturers and data collection services which include:

• Security concerns.

• Fault tolerance concerns.

• Privacy concerns.

• Interoperability concerns.

• Data integrity concerns.

All these challenges add requirements for the manufactures of smart meters to ensure security and privacy
of meters by encryption, authentication and privacy of meter data. In this thesis we are going to discuss
and provide a solution for the interoperability challenge that faces smart meters [19].

Related Work 6

2.1.3 Interoperability Challenge

As discussed in the previous subsection, there are several challenges that face the smart meters industry.
In this thesis, we are going to discuss the interoperability challenge in detail and we will provide a system
that is capable of overcoming this challenge. Interoperability is a challenge that not only faces the smart
meter industry, but it also faces IoT applications in general.

As mentioned in the previous sections, there has been an increase of smart meters production.
With this increase, a large number of manufacturers has been trying to manufacture smart meters. Each
manufacturer has his own specification of smart meters. The diversity of the manufacturers introduced
the interoperability challenge as meters may vary in different parameters, which cause inconsistency
in the technologies used. In addition, this inconsistency makes it difficult for data collection services
to communicate with different types of smart meters, which may lead developers to invest a massive
amount of time to program specific solutions for each type of smart meter, which adds to the cost of the
data collection service. In this thesis, we are going to introduce a system that uses generic API, which
allows a data collection service to communicate with any type of smart meter, where the implementation
of the API solves the underlaying low level interoperability issues. In the next subsections, we are going
to highlight the different parameters that can cause interoperability issues between different types of
smart meters.

2.1.4 Protocols Diversity

One of the most important issues that can cause incompatibility is the protocol used used by smart
meters; there is a wide variety of protocols and it depends on the manufacturer which one to use. This
variety of protocols add challenges as follows:

• Different parameters in initiating connection.

• Different methods of data transfer.

• Different parameters in closing a connection.

There are several protocols specific to the smart meters domain. DLMS/COSEM is a popular protocol
for exchanging metering data [17]. DLMS stands for Device Language Message Specification which
offers an abstract concept for communication, while COSEM stands for Companion Specification for
Energy Metering which represents a set of rules for data exchange with metering equipment [9]. Another
protocol popular in north America is ANSI C12.18 [18], which is an ANSI standard for describing the
two-way communication with metering equipments. Open Smart Grid Protocol [27] is another protocol
for metering data exchange, which was issued by the European Telecommunications Standards Institute;
however for the Open Smart Grid Protocol several security flaws were identified [20] [21]. Recently, there
has been a growing trend of using more general protocol not specific to the metering domain, such as

Related Work 7

TCP/IP which will allows an universal metering interface for the production of smart meters as well as
smart grid devices. In this thesis our proposed implementation of generic API is going to support the two
most popular protocols DLMS/COSEM and ANSI C12.18.

2.1.4.1 Naming Conventions Diversity

Another challenge that can face developers in terms of interoperability is difference in naming con-
ventions, which may cause difficulties reading information from registers in a smart meter. When
reading data from a smart meter, the data collection service should indicate which register to read from.
Register names vary, not only from protocol to protocol, but it also from manufacturer to manufacturer.
For example, the DLMS/COSEM protocol allows the usage of two naming conventions, namely short
naming and logic naming. Some manufacturers allow only the short naming convention, while other
manufacturers allow only the logic naming convention. Also some manufacturers can allow both types
of naming convention giving the developer freedom to use whatever naming convention he prefers. Not
to mention, some protocols may use naming conventions totally different from short naming and logic
naming.

However, in the recent years a standardized naming convention has been introduced under the name
Object Identification System (OBIS). OBIS offers standard identifiers for all data within smart meters.
Data can be either measurement values or abstract values, usually stored inside registers which are inside
the smart meter. OBIS consist of six value groups in a hierarchal structure. The groups are counted
from group A to group F which are divided as follows [3]:

• Group A: Determines energy type read.

• Group B: Determines the channels to be measured.

• Group C: Determines the measured physical quantity.

• Group D: Determines the handling methods and codes related to certain countries.

• Group E: Determine tariff rates.

• Group F: Determine values recorded in the past.

Groups B, C and D have code space which can allow for manufacturers to assign their own identifiers,
leaving more freedom for manufacturers. In modern DLMS/COSEM smart meters, every COSEM object
is distinguished by the logical name given by OBIS, class identifier and version. However in old DLMS/-
COSEM smart meters it can use different form of naming convention depending on the manufacturer of
the smart meter [2].

Related Work 8

2.1.4.2 Data Types Diversity

Different data types of measured and abstract values in the smart meter add challenges for developers
when accessing data. For example, a smart meter’s register that measures positive active energy could
return a double value while in another smart meter that use different protocol can return an integer value;
this inconsistency could result in the loss of information when casting double to integer; moreover, it can
result in incompatibility errors. One of the causes of such differences in data types is the inconsistency
in units which change the implementation of numbers in the data types. The interface class definition
of OBIS offers a standard data type of each data value in the metering equipment [2]. Therefore, OBIS
allows the standardization of the data values across metering equipments whether measure values or
abstract values.

2.1.4.3 Units Diversity

The final issue that cause inconsistency through different metering equipments is units diversity. This
issue occurs when a smart meter measures the reading value of a certain register in a unit, while another
meter measures the reading value of a certain register in another unit. For example, a smart meter may
measure positive active energy in kWh, while another smart meter may measure positive active energy
in Wh; this causes not only inconsistency errors in terms of units, but it also causes issues such as, that
two equal readings may have different values, which opens the room for confusion.

2.1.5 S&T

The thesis project is developed in cooperation with the S&T company [30]. In this subsection, we are
going to discuss the profile of S&T and how our project helps the company with the challenges it face.

S&T was founded in 2008; today it is part of the Exchange’s TecDAX index of leading high-techs. The
company has some 3,700 staff members working for the Group’s subsidiaries and operations, which are
located in more than 25 countries. S&T’s clients range from SMEs that are active in the widest variety
of sectors to leading groups that operate on a world-spanning basis [1]. S&T has several technology
departments including automation solution, enterprise security, software development and smart energy.
This project is developed in cooperation with the smart energy department were the project is part of
end-to-end facilitation of smart-energy projects, smart grids and smart metering solutions.

S&T has different customers using large amount of different IoT devices, each have its own proto-
col, which causes interoperability issues; therefore this adds challenges to the development of systems
for each protocol used by every IoT device, which adds to the development cost. Our suggested system
offers a generic API that is capable of connecting with different protocols without knowing the specific
protocols that the different IoT devices use. In addition S&T has customers that have smart meters
which use different protocols and have different manufactures. In this project we decided to focus on

Related Work 9

smart meters as the IoT devices, because not only do smart meters have interoperability issues, such as
different protocols and manufactures, but also smart metes are handy and much easier to connect to a
gateway for experiments compared to other IoT devices. S&T helped us with the technology supplies:
two smart meters that used different protocols (DLMS/COSEM and ANSI C12.18) was handed out to
us for the development and testing of the generic API.

2.2 State of the Art

2.2.1 In Research

One of the biggest challenges that face the IoT field is the interoperability challenge, due to the different
protocols used by the devices. The research described in [38] was able to design a gateway that was
developed in order to convert protocols of different sensor network protocols. This gateway is based on
the protocols Zigbee and GPRS to handle telecommunication requirements and IoT application scenarios
in general. Figure 2.1 [38] shows a scenario of using this gateway in a smart home. A smart home
represent a house that contains different types of sensors that measure set of data constantly. These
sensors are used in order to help providing a house that is comfortable as well as environmental. The
"on field" gateway plays an extremely crucial role in interconnecting the different IoT devices together,
although each device uses is own protocol and specification.

Figure 2.1: Scenario of Using the Gateway in Smart Home (from [38])

The designed gateway software architecture is composed of three different modules, shown in Fig-
ure 2.2 and described as follows:

Related Work 10

• Sensor Node Module: A sensor node module represents the perception layer; it collects the
sensed data and send the collected data to the gateway. The sensor node module also can receive
commands from the gateway.

• Gateway Module: Represents the bridge between the sensor node and the application layer: after
receiving data from this module sensor node, it transmits the data to the application layer. The
designed system has a Ethernet interaction module and a GPRS interaction module to enable
communication with the application layer. It also has a protocol conversion module to enable the
protocol conversion to overcome the interoperability issue discussed before.

• Management Platform: The management layer contains an application platform, which commu-
nicates with the gateway in order to manage the gateway and the sensor network. The gateway
provides a user interface to allow the control of sensor nodes through the gateway.

Figure 2.2: Software Architecture of the Gateway (from [15])

Gateways act as a middle man between data collection service or utility provider and the IoT appliance.
According to [15], gateways connected to smart meters have two main functionalities: First, they collect
data from all different smart meters connected to it. The second functionality is that gateways offer an
interface in order to enable easier data exchange with the smart meters. Gateways retrieve data from the
smart meters according to different parameters as follows [15]:

• Meter Profiles: Meter profilers indicate the configuration of the smart meter for energy providing
and measuring consumption.

• Time-stamps: Each measured value or data exchange between a smart meter and the gateway
has a time-stamp which indicates the exact time when the last measurement happened or the last
data exchange happened.

• Tariffing Information: One of the biggest advantages of smart meters is having different tariffs
based on the time of the day or the energy load from the city point of view. Whenever a new value
is read in from the smart meter, such as power consumption, the value related to the tariff at that
point of time should also be read.

Related Work 11

"Ambient Assisted Living" [37] is improving the health care as well as the prognosis of different types
of diseases by artificial intelligent and Internet of Things, by monitoring the health status of the patient
continuously and learn behaviors and patterns in order to provide more accurate diagnosis. According
to [37], interoperability, system security, dynamic increase in storage, and streaming quality of service
are challenges that face IoT and multimedia technologies in the field of health care. Health care uses
IoT devices and sensors for applications such as ambient aiding living and telemedicine; therefore [37]
suggested a system that is able to overcome these challenges for an ambient assistant living system. We
are going to discuss how the system overcame the interoperability issue.

The medical and health field faces interoperability challenges especially in telemedicine and ambi-
ent assisted living, because an ambient assisted living system needs to be connected to different devices
that sense different objects, such as blood pressure and blood-glucose using different meters. Ambient
assisted living supports wireless and wired connection based on protocols that are used by most devices,
such as the Bluetooth Health Device Profile (HDP) and the ZigBee Health CareTM Profile. However,
for wired connection the USB Personal Healthcare Device Class (PHDC) is th most used, as it is recom-
mended by CHA. Meters have different manufacturers; therefore each meter has its own specification.
The Continua Health Alliance (CHA) is international, non-profit, authorized telemedicine and telehealth
standard body. The suggested IoT gateway follows the CHA specification which suggests two layers
for overcoming the interoperability issues in IoT health gateway. The first layer is the transplantation
layer which is responsible for a wireless and wired communication health standard. In the data layer
the frequent basic framework protocol represent optimized exchanging model and application profile. In
addition, the framework protocol defines message types, data types and communication models. The
designed system was implemented on hardware gateway as Windows XP desktop PC. Figure 2.3 shows
the architecture developed by [37] based on the CHA framework; the designed system is able to overcome
the challenges of interoperability, system security, streaming quality of service, and dynamic increase in
storage in the field of ambient aiding living and telemedicine [37].

After the data have been collected by the gateway, these are stored in the database for the utility
provider or the data collection service. In general gateways can have one of two forms, either hardware-
gateway or software-gateway. A software-gateway was developed by [15] to gather data from different
smart meters. The gateway was developed as a Java-based smart meter gateway framework in order
to gather the data and send them to external market participants such as utility providers and data
collection services. The developed gateway has a Graphical user interface (GUI) for configuration, such
as connecting more meters to the gateway.

2.2.2 In Industry

In the industry there exist several vendors for IoT gateways, such as Microsoft Azure [25], IBM Watson
[16], AWS [7] and Google cloud service [12]. However, all of the vendors, except Microsoft Azure, do
not produce gateway that enables protocol conversion. The Microsoft Azure IoT protocol gateway is
the most popular protocol gateway in industry. Other vendors’ gateways offers different capabilities. For
example, the IBM Watson software for gateways enables devices to work as a gateway by introducing

Related Work 12

Figure 2.3: Architecture of the Ambient Assisted Living System (from [37])

functionalities to communicate with connecting devices such as single connection, device management,
and automatic registration [35]. However, the IBM Watson gateway does not handle the protocol
interoperability issues.

In the following section, we are going to discuss the product Microsoft Azure IoT protocol in more detail
as it is the most popular gateway software product that supports protocol conversion.

2.2.2.1 Azure IoT Protocol Gateway

The Azure IoT protocol gateway is a getaway designed by Microsoft, that supports protocol adaptation
and conversion framework. The sole purpose of the Azure IoT protocol gateway is that the gateway
overcomes the interoperability issue, unlike many other gateways that were previously discussed. The
Azure IoT protocol gateway enables bidirectional communication which makes it suitable for smart meters
domain, because smart meters need a gateway that enables bidirectional communication, as it this very
crucial functionality of smart meters [5]. The Azure IoT protocol gateway act as a bridge between an IoT
hub and devices as shown in Figure 2.4 [22]. The Azure IoT hub is a cloud platform that supports securely
connection and monitoring of millions of connected IoT devices [24]. IoT hub supports communication
over a standard set of protocols which are MQTT (Message Queuing Telemetry Transport), Advanced
Message Queuing Protocol and HTTPS (Hyper Text Transfer Protocol with Secure Sockets Layer) [5].
The Azure IoT protocol gateway was designed, because not all devices and sensors use these set of
protocols. In general, the Azure IoT protocol gateway can be deployed on a cloud service as software
gateway or in an on-premise environment, such as on field gateways which represent hardware gateways
[5].

Related Work 13

Figure 2.4: Field Gateway and Cloud Gateway Communicating with IoT Hub [24]

The MQTT protocol is one of the most popular protocols for communication with machines in the IoT
field. So in in order to customize the behavior of MQTT, the Azure IoT protocol gateway provides a
MQTT protocol adapter. Both the Azure IoT protocol gateway and the MQTT adapter are open-sourced
projects in order to provide flexibility. Therefore, the developer can use the open source software project
to add a variety of not only protocols, but also protocol versions. In addition, we may create a custom
design and implementation after modifying and adding modules to the open-source project for specific
scenarios. The advantages of using IoT protocol gateway for protocol conversion are as follows:

• The protocol is highly scalable, as it can support millions of devices connected to it.

• The product enables custom authentication.

• The product enables message transformations.

• The product enables compression/decompression, for data exchanged between IoT hub and devices.

• Enables encryption/decryption of data exchanged between IoT hub and devices.

• The project is open source to add support various protocols.

There are numerous advantages of using Azure IoT protocol gateway as the gateway between cloud
provider and devices. However, there are also disadvantages; one of the most important disadvantages
of using the Azure IoT protocol gateway, is that the cloud provider has to be an Azure IoT hub, i.e,
the gateway can only connect to Azure IoT hub in order to transmit the data transited by the devices.
Sometimes developers will prefer using other cloud provider such as AWS or the Google Cloud platform.
However, in general Azure IoT hub is similar to both of them.

Analysis of Protocols 14

Chapter 3

Analysis of Protocols

The aim of this chapter is to introduce the protocols that are used in the thesis project. First, we will
introduce an overview over the protocols DLMS/COSEM and ANSI 12.18 and their application layers.
Then we will present a comparison between both DLMS/COSEM and ANSI 12.18, highlighting their
advantages, common features, and differences.

3.1 The DLMS/COSEM Protocol

DLMS/COSEM provides an interface model, which supplies a view and a user interface for the func-
tionality of the metering equipment, and a communication protocol which defines the method of data
transportation and data access [9]. DLMS/COSEM consist of two parts, the DLMS part and the COSEM
part. The DLMS (Device Language Message Specification) "is a generalized concept for abstract model-
ing of communication entities" [9]. It is the protocol used for communicating between meter equipments.
On the other hand COSEM (Companion Specification for Energy Metering) characterizes a set of objects
to interchange data with the metering equipment using DLMS protocol [9]. The physical meter is
modeled as a logical device using COSEM; the logic devices has logical device name which is a unique
identifier. Data in each logic device can then be accessed using interface objects, which are modeled using
association objects. In a given context, the data about the available resources in a logic device are avail-
able using association objects [33]; this means that we can consider this logic device as a container that
contains COSEM objects. These objects collect data such as power consumption, which are in the form
of attributes and methods [6]. The availability of certain resource depends on the given access rights [33].

The information stored within a smart meter are in the attributes form, where the attribute values
represent the specification. Each COSEM object in the meter equipment has a logic name as the first
object as it acts as identification key for the object itself [33].

Analysis of Protocols 15

3.2 The DLMS/COSEM Application Layer

The information exchange between the meter and the data collector takes place between two application
process (APs), which are the client and the server APs. The data exchange happens through protocol
stack, which is shown in Figure 3.1. In the DLMS/COSEM architecture there are three layers, the
application layer, the intermediate layer and the physical layer. Each layer provides a service to its upper
level, while it receives a service from its lower level. In this section we describe the application layer of
DLMS/COSEM.

Figure 3.1: Client/server Protocol Stack (from [9])

The main part of the COSEM application layer (AL) is the COSEM application service object (ASO),
which offers a service to the user, COSEM application process and service by the lower layers. It has three
main components on the client and the server side. The first component is Application Control Service
Element (ACSE). The task of ACSE is to create, maintain and release an application association. The
next component is the extended DLMS Application Service Element (xDLMS_ASE), which is responsible
for data transportation between the COSEM application processes. There exist two methods for reference
in the DLMS/COSEM smart meters. One is the logic name and the other is the short name. Therefore,
there exist two types of xDLMS_ASE, one that provides login name referencing, while the other offers
short name referencing; it depends on the server of the application layer whether to have one type of
xDLMS_ASE or the other or both together. The last component of ASO is the control function which
specifies how ASO calls and invokes functionalities of the ACSE, xDLMS_ASE and the supporting layer
services. The diagrams illustrated in Figures 3.2 and 3.3 describe the definitions of the client side and the
server side control function. In these diagrams the ASSOCIATED state in both client and server models
is the state where a connection is established and all functions of xDLMS are available for usage. The
control function stays in this state until a release request is performed by the client.

Analysis of Protocols 16

Figure 3.2: State Machine for the Client Side Control Function (from [9])

Diagrams 3.2 and 3.3 show five states for the control function in both the client and the server side.
The first state is Inactive which is the state were no activity is happening in the control function. In the
IDLE state no AA is created or released or being created for the client side; in this state the CF can
handle the EventNotification service, while in the server side the CF can handle the EventNotification
or InformationReport services. In the Association pending state, the AP has requested the creation of
AA by COSEM_OPEN request. In the Associate state the AA has already been established; also the data
service are available for data exchange in this state. The final state is Associate release pending, which is
entered when the AP requests the COSEM_RELEASE request; the CF remains in this state till the server
accepts the release request and then enters automatically the IDLE state again.

3.3 The ANSI C12.18 Protocol

ANSI C12.18 is a protocol that uses optical port communication to exchange meter data with utility
provider so it is described using ANSI C12.19 [29], which is a standard for data exchange from and to
the meter and utility provider using a table data structure. The table is divided and grouped in to certain
sections. Each section maps to certain feature set and related functions, such as time of use. Data
exchange occurs by reading and writing to a certain table or part of a table [8]. In order to exchange
information and allow configuration and programming, the application layer provides services and data
structures which are needed to support devices that use the ANSI C12.18 protocol. ANSI C12.18 has

Analysis of Protocols 17

Figure 3.3: State Machine for the Server Side Control Function (from [9])

several applications not only in smart meters industry, but also for other applications, such as in smart
street lightning.

3.4 The ANSI 12.18 Application Layer

The ANSI 12.18 protocol stack consists of seven layers shown below from the lower layer till the upper
layer:

1. Physical layer.

2. Data link layer.

3. Network layer.

4. Transport layer.

5. Session layer.

Analysis of Protocols 18

6. Presentation layer.

7. Application layer.

The application layer is responsible for providing a group of services and a table data structure which is
described by ANSI C12.19; it lets ANSI C12.18 devices be supported by the ANSI C12.18 protocol. The
services provided by application layer are nine sets of request services and nine sets of response services.
The list below shows the set of services for both request and response:

For the requests service:

• <Ident> Identification service request.

• <read> Read service request.

• <write> Write service request.

• <logon> Logon service request.

• <security> Security service request.

• <logoff> Logoff service request.

• <negotiate> Negotiate service request.

• <wait> Wait service request.

• <terminate> Terminate service request.

For the responses service:

• <Ident-r> Identification service response.

• <read-r> Read service response.

• <write-r> Write service response.

• <logon-r> Logon service response.

• <security-r> Security service response.

• <logoff-r> Logoff service response.

Analysis of Protocols 19

• <negotiate-r> Negotiate service response.

• <wait-r> Wait service response.

• <terminate-r> Terminate service response.

The initiation of a reading service or writing service is only done after opening a session, which is
established using the Logon service. Using the read service, the table data is transferred to the requesting
device; using the writing service, the table data is transferred to the target device, in our case the smart
meter. After session is finished, it should be shut down using the Logoff request. The idle period in the
application layer is maintained between communication devices using the Wait Service. The Terminate
service request immediately shuts down the service and stops the communication channel.

3.5 Comparison between DLMS/CSOM and ANSI C12.18

In this section we are going to present the features of each protocol. In addition we are going to present
the advantages and the disadvantages of using one protocol over the other.

3.5.1 DLMS/COSEM

DLMS/COSEM is one of the most popular protocols for smart meters communication in Europe. There
are some features that makes DLMS/COSEM unique compared to other protocols. To begin with,
DLMS/COSEM protocol was designed specifically for automatic meter reading [9], which means that
the specification of the protocol as well as the design of the protocol is done in order to fulfill the
smart metering required and recommended features. In addition, one of the most crucial advantages of
using DLMS/COSEM is the ability for smart meters to exchange data and communicate to any data
collection system, regardless of manufacturer of the smart meter or the type of the smart meter, such as
whether it measures electricity, gas, or water. In addition, DLMS/COSEM smart meters offer a standard
identification system, which means that objects with the same specifications in smart meter will have
the same identification [32]. As the DLMS/COSEM protocol is used specifically for exchanging data
with smart meters, it has an interface that is designed specifically for all kinds of energy types such as
electricity, gas, and water [31]. Since the data is different from one energy type to another energy type,
the interface for each energy type has a unique standard identifier. Moreover DLMS/COSEM allows
manufacturers to innovate in order to always create evolution to the usage of the protocol by speci-
fying specific instances, attributes and methods without changing the main structure of the identifiers [31].

Although DLMS/COSEM has many advantages, it also have some disadvantages over other protocols.
Although the protocol enforce interoperability of the smart meters by creating standard identification
system (the OBIS system), the former smart meters that used the DLMS/COSEM protocol did not have
to use the standard identification system and manufacturers could define the identification system as

Analysis of Protocols 20

they prefer. Therefore, former smart meters have interoperability issues when they communicate with
a system that uses the standard identification system. For example the DLMS/COSEM smart meter
that was used in this project did not use the standard identification system. Therefore, the generic API
was developed in order to ensure interoperability. Another problem with DLMS/COSEM smart meters is
high authentication, the reason is that no high level security mechanism is specified by DLMS/COSEM.
As a result, manufacturers implements their own security mechanisms, which does not ensure high
authentication with all smart meters that use DLMS/COSEM [13].

3.5.2 ANSI C12.18

ANSI C12.18 is a protocol that can work with several IoT applications, not just smart meters. The ANSI
C12.18 protocol is very widely used in the United States of America. One of the biggest advantages
of ANSI C12.18 smart meters is providing standard methods for communication. Specially for new
designed smart meters the ANSI C12.18 standard specification is basic requirement. In addition smart
meters using the ANSI C12.18 protocol tend to be adjustable as the usage of the meter change, such
as high consumption customers such as factories. However, deploying such high scale smart meters is
not economic for smaller usage, such as residential meters [29]. Another advantage is using the ASNI
C12.19 table data structure, which enables very efficient data exchange between a smart meter and a
data collection service in a home gateway using any type of physical transport with the meter, as ANSI
C12.19 is fully extensible with additional data structures [29].

One of the disadvantages of the ANSI C12.18 protocol is that it can be used for multiple applica-
tions not just smart metering. This make some of its features not customizable to the Automated
Meter Reading (AMR). In general there have been improvement of the ANSI C12.18 protocol, such as
the ANSI C12.21 protocol and the ANSI C12.22 was implemented as the latest version of the ANSI
protocols. ANSI C12.22 provides a better security mechanism as it offers both session and sessionless
communication, unlike ANSI C12.18, which provides only session oriented communication. Therefore,
ANSI C12.22 provides less signaling overhead [34].

Design of a Generic API 21

Chapter 4

Design of a Generic API

This chapter presents the generic API developed in this thesis. At the beginning, it describes the com-
munication between a data collection service such as electricity company and smart meters through a
gateway. This is followed by a description of the challenges that face developers in order to communicate
with different smart meters that use different protocols and naming conventions. Then we describe the
generic API in abstract way to overcome the challenges described and to provide protocol support no
matter what type of protocol or naming convention used by the smart meter. At the end of the chapter,
we describe the API using UML and we explain the supported methods in the API.

4.1 Communication between Data Collection Service and Smart
Meters

The communication between a data collection service and smart meters is a bidirectional communication;
the data collection service can read information from smart meters, such as power consumption in
particular time, or it can write information on smart meters such as resetting the smart meters power
consumption value register. The communication between a data collection service and smart meters
usually proceeds via a gateway that serves as a bridge between the data collection service and the smart
meter. The gateway can be either a hardware or software appliance. Gateways have many usages, for
example data duplication to allow fault tolerance, or compression and cashing to make data translation
faster or encryption to allow secure data protection. In our implementation the protocol conversion over
the gateway allows communication and connectivity between both sides without depending of type of
protocol used by different smart meters connected to the gateway. Figure 4.1 shows the connection
architecture between data collection service and smart meters.

Design of a Generic API 22

Figure 4.1: Communication between Data collection service and smart meters

4.2 Interoperability Challenges in Smart Meters

Smart meters can vary in different parameters which adds challenge on the data collection service, because
customers may have very diverse types of smart meters. The first and most important issue that can cause
incomparability is the protocol used by smart meters; there is a wide variety of protocols and it depends
on manufacturer which one to use. This variety of protocols add challenge in terms of parameters of
initializing connection, data transfer or closing connection, as it is different in other protocols. Another
difference is naming conventions, for example in the DLMS/COSEM protocol some smart meters use
short naming conventions, while other use logic naming convention. Moreover, another challenge is
different data types, in smart meters when reading a value of power from register it could be integer
while in another one the returned value could be double. Finally, difference in units add challenge, for
instance one meter may return a value of power in KW while other meter returns it in W, in other words
there is no constancy in terms of units throughout different smart meters.

Design of a Generic API 23

4.3 Gateway Design

In order to implement the generic API to translate protocols, we have to design and implement a gateway
where our API can translate protocols over it. We used a computer as hardware gateway that act as
middle man between smart meters and data collection service. Our gateway has a configuration file which
is designed as Comma-separated values (CSV) file that includes information about the gateway and smart
meters connected as follows:

Figure 4.3 shows CSV configuration file that has one DLMS/COSEM smart meter supported, which
contains elements described in the list above in order.

Figure 4.2: CSV Configuration File with One DLMS/COSEM Smart Meter Supported

4.4 The API Specification

The API operations are expressed as abstract functions, subroutines or methods, which may be subse-
quently connected to language binding such as Java. The data types in the generic API are organized in
Table 4.1. Table 4.1 shows an overview of the main building blocks of our API which defines different
data types used by the system. The next subsection will describe each module of the API in detail.

4.4.1 Gateway Data Type

Our API enables the data collection service to communicate with gateways to get information about
meters and gateways or write data into meters and gateways. Since a data collection service may
communicate with multiple gateways, not only single gateway, our API has two methods to return
gateways. The first method returns a default gateway, while the other one returns specific gateways
by ID. Gateway is the main building block in our API, for example a data collection service can not
get meters or get readings without specifying a gateway to return the data. In general, the gateways
connected to the data collection service are in a collection which has the name gateway pool. The
data collection service queries the gateway pool in order to return specific gateway. The operations for
returning a gateway from the gateway pool, used by the gateway factory, is described in Table 4.2:

Design of a Generic API 24

Data type name Description
Gateway Represents the gateway in our system, can be a hardware gateway or a

software gateway that acts as middle man between the meter and the
data collection service.

Meter Represents a meter in the system, a meter connects with one or more
gateways. A meter contains registers that record information about the
meter such as the manufacturer of the meter or some measured value of
the meter.

Register Represents the registers inside each meter that record measured values;
registers can also it can contain abstract values about the smart meter.

Virtual protocol Virtual protocol represent the OBIS standard, which standardizes not
only the naming convention of the registers but it also standardizes the
data types that are returned by querying a register.

DLMSProtocol As DLMS/COSEM smart meters in the past used to work with differ-
ent standards rather than OBIS the data type DLMSProtocol allows
developers to use the API for that particular standard. This allows the
user to query a register with the standard register name; the result will
be data in the standard unit of the DLMSProtocol standard and in the
standard data type of DLMSProtocol standard.

Register unit A Register unit describes the unit of the data returned by a particlar
register (for example W for power consumption unit Watt).

DataStore A DataStore object represents the value of a measurement and type as
a register type, both encapsulated into one object.

Table 4.1: Overview of Main Building Blocks of the Generic API

Method name Return type Method Description Throws Exception
getGateway(string
gatewayID)

Gateway Returns specific gateway queried by
the gatewayID.

Yes (Gate-
wayNotFoundEx-
ception)

getGateway() Gateway Returns the default gateway which
is set by the data collection service
which market as default gateway in
the configuration file.

Yes (Gate-
wayNotFoundEx-
ception)

Table 4.2: API Methods for Retrieving Gateway Objects

Design of a Generic API 25

4.4.1.1 getGateway(string gatewayID)

The method getGateway(string gatewayID) returns the gateway which is the initial building block of our
API. The data collection service will communicate with gateways, as each gateway could have a distinct
geographic location or the number of meters could be extremely huge such that the meters will be
distributed among several gateways. Each gateway is given a unique sequence of alphabetic and numbers
identifier, which is stored in the configuration file. The method getGateway(string getewayID) fetches
all gateways and returns a gateway which has the configuration file gateway identifier as the parameter
getewayID. The collection of gateways that are connected to the data collection service is called gateway
pool. A gateway pool represents the set of gateways which can be queried by the data collection service
by getGateway(string gatewayID) to return a specific gateway.

4.4.1.2 getGateway()

The method getGateway(), is different from getGateway(string gatewayID) as it takes no arguments; it
returns the default gateway. The data collection service or the utility provider is responsible for defining
one and only one default gateway. For example, the data collection service could define a default gateway
for a gateway that is connected to the test meters, or it could define a default gateway for a gateway that
has the largest number of meters connected to it. The configuration file contains one boolean variable
isDefault which defines if the gateway associated to the configuration file is default gateway or not. If
the data collection service defined several default gateways as default gateways, only the gateway marked
as default that has the least lexicography gatewayID is returned, (the algorithm searches every gateway
in the order of the gatewayID and once it finds a gateway in the configuration file that has isDefault of
true, it returns that gateway).

4.4.2 Gateway Methods

The gateway allows on data collection service or utility provider to query different meters connected to
it. This helps the data collection service to track the different meters which are used by the customers.
The gateway supports four different methods for retrieving meters, or information about the gateway.
The supported methods are described in Table 4.3.

4.4.2.1 getMeter(string meterID)

The method getMeter(string meterID) is invoked on a gateway object; it returns an object of type meter.
Each meter is assigned by unique meterID identification string. The gateway is aware of each meter
connected to it, because of the configuration file. The configuration file contains data about each meter
and the details about each meter such as the meter identifier. The method iterates over all meters

Design of a Generic API 26

Method name Return type Method Description Throws Exception
getMeter(string
meterID)

Meter Returns a specific meter
queried by the meterID.

Yes (meterNot-
FoundException)

getAllMeters() List <Meter> Returns the list of meters con-
nected to the gateway.

No

getAllMeters-
ByProto-
col(Protocol
protocol)

List<Meter> Returns a list of meters that
support a specific protocol
"protocol"

No

getAllSupported-
Protocols()

List <Protocol> Returns the list of protocols
that are supported by the
gateway.

No

getGatewayID() string Returns the string identifica-
tion value of the gateway.

No

Table 4.3: Gateway Methods

that are connected to the gateway and returns the meter with the same meter identifier as the method
parameter.

4.4.2.2 getAllMeters()

The method getAllMeters() returns all meters connected to the gateway as a list of meter objects after
being invoked on a gateway object. The list of meter objects is retrieved by iterating over the configuration
file and returning all meters in the configuration file in the list form. Whenever a new meter is connected
to the gateway it must be added to the configuration file so that getAllmeters() can add this new meter
to the list of meters.

4.4.2.3 getAllMetersByProtocol(Protocol protocol)

The method getAllMetersByProtocol returns list which has meters objects that use a certain protocol.
The method cause its configuration file to find the meters that use the same protocol as the one in
the method parameter. Meters with the same protocol will have similar properties such as naming
conventions, register types and units.

4.4.2.4 getAllSupportedProtocols()

The method getAllSupportedProtocols() return a list of protocols, these protocols are supported by the
generic API. These protocols are returned from the configuration file where it is described which protocols
the system supports. Therefore a user can add many meters in the system as long as the protocols of
those meters are supported with the protocols returned from the list getAllSupportedProtocols(). The

Design of a Generic API 27

protocols supported by getAllSupportedProtocols() have specific functions and methods for the supported
protocols handling. When a new protocol is supported, it should be added to the supported protocols in
the configuration file.

4.4.2.5 getGatewayID()

The method getGatewayID() returns the gateway identifier which is a string identification value. Getting
the gatewayID which is recorded in the configuration is useful when the data collection service has a
large number of gateways and developers need to know the gatewayID of a particular gateway. This is
especially important for default gateway, where the user does not have to specify the default gateway
with the method getGateway(string gatewayID) and can only specify it with method getGateway().

4.4.3 Meter Methods

The meter object represents physical meter connected to the data collection service through gateway. As
mentioned before one or more smart meters are connected to a gateway while a smart meter has many
registers. Registers are distinct from one smart meter to the other. The meter object supports several
methods which are used no matter what protocol is used. For example for a read function it can be
called over a DLMS/COSEM protocol smart meter or an ANSI C12.18 smart meter. Therefore, a level
of abstraction is introduced that enables developers to use the system no matter what type of protocol
used by the smart meter, type of meter or the manufacturer of the smart meter. However, the generic
API system supports only the protocols that are added to the configuration file. The methods supported
by the meter object in our system are shown in Table 4.4.

4.4.3.1 getAllRegisters()

The method getAllRegisters() returns all the registers within the smart meter object invoked upon the
method. The returned object is a list of register objects which is described in Subsection 4.4.4. The
generic API iterates through the registers used in the system to generate the list. The process of iterating
through the registers is done depending on the protocol used by each meter. The registers naming
convention used by a smart meter that uses a certain protocol is different than another smart meter that
uses a different protocol.

4.4.3.2 getManufacturer()

The method getManufacturer() returns the manufacturer of the smart meter. This helps as some smart
meters have different specifications due to manufacturer preference. For example the DLMS/COSEM

Design of a Generic API 28

Method name Return type Method Description Throws Exception
getAllRegisters() List<Register> Returns all registers that the

smart meter has.
No

getManufacturer() string Returns the manufacturer
name of the smart meter.

No

getProtocol() protocol Returns the protocol that is
used by the smart meter.

No

getRegister(string
registerID)

register Returns the register with the
identifier registerID.

Yes (RegisterNot-
FoundException)

getMeterID() string Returns the string identifica-
tion value of the meter.

No

hasRegister(string
registerID)

boolean Returns whether the smart
meter contains a register with
register identifier registerID

No

openConnection() void Starts connection between the
gateway and the smart meter.

Yes (IOExcep-
tion)

closeConnection() void Closes the connection which
was opened to prevent fur-
ther communication between
smart meter and gateway.

Yes (IOExcep-
tion)

isWritable() boolean Returns whether the smart
meter allows writing to it.

No

disableManual-
Disconnect()

void Disables the owner of smart
meter to turn it off.

Yes (IOEx-
ception and
NotWritableMe-
terException)

enableManual-
Disconnect()

void Enables the owner of smart
meter to turn it off.

Yes (IOEx-
ception and
NotWritableMe-
terException)

breakerClose() void Reaches the closed state
which enables the smart
meter to function and opens
electricity.

Yes (IOEx-
ception and
NotWritableMe-
terException)

breakerOpen() void Reaches the locked open state
which turns off the electric
connection, causing the con-
nected object to be turned off.

Yes (IOEx-
ception and
NotWritableMe-
terException)

breakerUnlock() void Reaches the open state which
returns the string identifica-
tion value of the meter.

Yes (IOEx-
ception and
NotWritableMe-
terException)

Table 4.4: Meter Methods

Design of a Generic API 29

naming convention could use a logic name, a short name or both. The use of a naming convention
over the manufacturer name and details regarding which naming convention is used is recorded in the
configuration file. The method getManufacturer() returns the manufacturer name from the configuration
file.

4.4.3.3 getProtocol()

The method getProtocol() is invoked on a meter object to return the protocol used by the smart meter.
The method returns the protocol object that represents the type of protocol used by the smart meter.
This is particularly important because some of the methods work on a certain protocol would not work
on another protocol, so developers may check if the specific protocol would be compatible with a specific
method without throwing an exception.

4.4.3.4 getRegister(string registerID)

One of the key methods that could be invoked on the meter object is getRegister(string registerID) as it
returns a specific register which has the register identifier registerID parameter. The method returns the
register object which is defined in Subsection 4.4.4 This method is particularly important as developer
can use the returned register object for reading or writing on it. The method iterates over the list that
represent all registers within the smart meter; once the register with same identification as the registerID
parameter is found, the current register in the list is returned.

4.4.3.5 getMeterID()

The method getMeterID returns the meter identifier of the meter object that is invoked on the method.
The meter identifier is a string representing the serial number of the meter which is stored in the config-
uration file. The meter identifier and the meter manufacturer are used to define meters as every meter
has its own unique serial number and manufacturer combined. In other words the serial number could
be the same across different manufacturers. However, the same manufacturer does not manufacture two
smart meters with the same serial number.

4.4.3.6 hasRegister(string registerID)

When the method hasRegister(string registerID) is invoked on an object meter with parameter registerID,
it returns as a boolean value whether the smart meter contains such a register. This method is particularly
important to check if the naming convention will return register that is defined in our system as it is
within the invoked meter. When calling method hasRegister(string registerID) the returned true false

Design of a Generic API 30

value allows checking if a register is within a meter before reading from that register; this ensures safety
rather than receiving an exception for not found register inside the smart meter.

4.4.3.7 openConnection()

One of the fundamental methods that meter a object invokes is openConnection(). The method open-
Connection() opens the connection to allow the gateway to query registers; it allows reads and writes to
the smart meter. openConnection() initiates the connection which depends on the type of the protocol
used by the meter. For example DLMS/COSEM uses different parameters to initiate a connection com-
pared to ANSI C12.18, in other words DLMS/COSEM connection is completely different from the way
ANSI C12.18 connects the gateway to the smart meter. Therefore the way of initiating the connection is
different. However our generic API is smart enough to change internally the way of connection depend-
ing on the protocol. The different parameters for initiating a connection are stored in the configuration
file to allow the generic API to initiate a connection without the developer caring about the underlying
protocol.

4.4.3.8 closeConnection()

The method closeConnection() is very similar method to the method openConnection(). After initiating a
connection by the method openConnection(), the connection should be closed after all the data exchange
has happened. Similar to openConnection(), closeConnection() closes a connection depending on the
underlying protocol used. For example, the DLMS/COSEM protocol has different parameters for closing
of connection compared to ANSI C12.18. Closing a connection is crucial, as without closing connection,
errors and exceptions could occur as unintentional reads and writes could happen, so it is safer to close
connection. The other reason is that if the gateway kept the connection open between every meter
connected to it, this will lead the gateway to become slower due to overloading the system.

4.4.3.9 isWritable()

The method isWritable() returns a boolean value of whether the invoked meter is writable or not. The
information related if the meter isWritable() or not is stored as a boolean value in the configuration file.
Each meter in the the configuration file has a value of whether it is writable or not. A meter may become
not writable because of authentication privileges that are not obtained. The value of true or false of the
method isWritable() help the developer to use the writing methods on the smart meter after checking if
the meter is writable or not. If the meter is not writable and the developer invoked a writing method on
the smart meter it will throw exception. Therefore, the developer should check if meter writable first in
order to ensure safety of the methods used.

Design of a Generic API 31

4.4.3.10 disableManualDisconnect()

The method disableManualDisconnect() is a method that returns nothing. This method is a write method
which can only execute when the meter is writable. Invoking disableManualDisconnect() on the meter
object, lets the owner or the user of the smart meter become unable to disconnect the smart meter.
Disconnecting smart meter means that the smart meter cuts the electricity on the electric suppliance
using the smart meter. Therefore, the meter does not record the values as the electric suppliance is off,
which leads the smart meter to be disconnected. The method disableManualDisconnect() forces the user
or the owner of the smart meter not to disconnect the meter using the physical disconnect button on
the smart meter. In other words, disableManualDisconnect() turns off the off button of the meter. In
the ANSI C12.18 smart meter that we used throughout the project the off button had the symbol [0]
which is disabled by the method call.

4.4.3.11 enableManualDisconnect()

The method enableManualDisconnect() is a writing method which is the opposite of the method dis-
ableManualDisconnect(). It enables the user or the owner of the smart meter to manually disconnect
the smart meter and make the smart meter cut the electricity usage by pressing on the physical button
on the smart meter for disconnecting. The user or the owner of the smart meter might find it useful
to disconnect the smart meter when he is leaving house for a period of time such as in vacation time.
This ensures the user that the electricity will not be used through this time; therefore it ensures safety in
terms of electricity usage and waste of energy. In other words, enableManualDisconnect() turns on the
off button of the meter.

4.4.3.12 breakerClose()

The method breakerClose() is invoked on the meter object by the data collection service in order to turn
on the smart meter and allow the meter to provide electricity and measure the electricity consumption.
Diagram 4.4.3.12 shows the different states of meter. The states of a meter is controlled by the data
collection service and depending on the situation the data collection service can turn off or turn on the
smart meter. The state marked closed in diagram 4.4.3.12 is the only state which allows the electricity
to be connected to the meter and allows the measure of the consumption. In this state on the ANSI
C12.18 meter that we used for experimenting, the light of the meter is turned off which indicates that
the meter is working. This method has a particular use case when the user returns from a period where
he was not using the electricity, such as when the user is on vacation away from home.

Design of a Generic API 32

Figure 4.3: State Diagram Showing Different States of Meter

4.4.3.13 breakerOpen()

The second method that is used to navigate in the state diagram is breakerOpen(). When calling the
method breakerOpen() at the state of the being closed, in other words the smart meter is working,
turns the smart meter off. In addition, it goes to state locked open. Therefore, the electricity becomes
disconnected from the electric suppliance. In the state locked open the LED blue on the ANSI C12.18
meter becomes illuminated with the blue color as shown in digram 4.4.3.12. The state locked open could
be reached also by the user if he pressed on the off button, which has the symbol [0] in the ANSI C12.18
smart meter. This way the user turns his own smart meter by moving the smart meter state from closed
to locked open. However the only way for the user to turn the smart meter off by pressing [0] button
is that the data collection service has allowed the user to do so. This can only be done in our system by
the data collection service where it calls the method enableManualDisconnect() discussed earlier. Calling
the method breakerClose() from the state locked open as shown in Figure 4.4.3.12 will move the smart
meter state from being locked open where it is not functioning to the state closed where it is functioning
and recording the consumption.

Design of a Generic API 33

4.4.3.14 breakerUnlock()

The final method in the state Diagram 4.4.3.12 is breakerUnlock(). The method breakerUnlock() moves
the state of the smart meter for the state locked open to the state open. For the smart meter the method
being in state open means the smart meter is not functioning and is not recording measurements. As
shown in digram 4.4.3.12 the only difference between the open state and the locked open state is that
the user in the open state can make the meter start recording the measurement and provide electricity by
pressing on the on button which in our ANSI C12.18 meter has the on button represented by the button
[1]. The state open has the smart meter LED illuminate with blue color but blinking. As mentioned no
only can user press on the on button [1] to move from state open to close but also the data collection
service can use the method breakerClose() to move to closed where electricity is provided and electricity
measurement occurs.

4.4.4 Register Methods

The register object represents the registers that exist within a smart meter. A register object is identified
by register identifier that is defined by the manufacturer, which is set based on the naming convention and
the protocol type. Registers can have different specifications, types and units. Different specifications
means that one register could be used to give data related to the smart meter used such as voltage
transformer ratio, it could have measured data by the smart meter such as positive active energy (A+)
total or it can have registers that allow writing. Register can have different data types, for example
one register may have a double value stored in a register while another register may have long, integer,
string, date or boolean value. Finally another distinct parameter between registers are register units.
Registers may have different units based on the information that the register is measuring. Kw, W,
kWh, kvarh, Wh, varh and seconds are possible units for registers. Some registers do not have units for
example boolean variables, so we assign it unit as none. RegisterType and RegisterUnit are two enums
in our generic API that allow user to use the legal values for register type and register unit. Table 4.5
shows the methods supported by a register object in our generic API.

Method name Return type Method Description Throws Exception
getRegisterID() string Returns the string identifier for

the register.
No

getRegisterType() registerType Returns an object of type reig-
sterType which represents the
type of register used.

No

getRegisterUnit() registerUnit Returns object of type regis-
terUnit which represent the unit
of the data in the register used.

No

Design of a Generic API 34

open() void Opens register for reading or
writing on it.

Yes (ConnectionExcep-
tion, IOException and
InterruptedException)

close void Closes open register for after
reading or writing on the reg-
ister.

Yes (ConnectionExcep-
tion and IOException)

read() list<DataStore> Returns a list which represent
the value read from the regis-
ter along with the register meta
data.

Yes (ConnectionEx-
ception, IOException,
ParserConfigurationEx-
cpetion and Interrupt-
edException)

getMeter() Meter Returns the meter that the reg-
ister belong to.

No

timeReads() double Returns a number that calcu-
lates the time to read a register
in the smart meter.

Yes (IOException)

readDouble() double Returns the double value of the
register, if it has a double value.

Yes (IOException, In-
validDataTypeException
and InterruptedExcep-
tion)

readInteger() integer Returns the integer value of the
register, if it has an integer
value.

Yes (IOException, In-
validDataTypeException
and InterruptedExcep-
tion)

readBoolean() boolean Returns the boolean value of
the register, if it has a boolean
value.

Yes (IOException, In-
validDataTypeException
and InterruptedExcep-
tion)

readLongInteger() long Returns the integer value of the
register, if it has a long value.

Yes (IOException, In-
validDataTypeException
and InterruptedExcep-
tion)

readString() string Returns the value in the register
as a string.

Yes (IOException, In-
validDataTypeException
and InterruptedExcep-
tion)

readDate() date Returns the date value of the
register, if it has date a value.

Yes (IOException, In-
validDataTypeException
and InterruptedExcep-
tion)

Table 4.5: Register Methods

Design of a Generic API 35

4.4.4.1 getRegisterID()

The method getRegisterID() returns the register identifier string. Each register has a specific unique
identifier. The method is particularly useful when working with a list of all registers; it needs to identify
the register by the identifier, because each register has its own properties.

4.4.4.2 getRegisterType()

The method getRegisterType() returns an object with the type registerType which represent the type
of the measured value of the register. The object registerType is an enum object which has all the
supported types by our generic API: string, integer, long, double, float, date, boolean and none. The
none type belong to registers that do not have values as read value such as write registers. Each register
has only one type of measured data. The method getRegisterType() helps developers know the type of
data expected from the register; this helps the developer select one of the methods related to the data
type such as readDouble or readBoolean explained in the upcoming subsections.

4.4.4.3 getRegisterUnit()

The method getReisterUnit() returns an object with the type registerUnit which represents the unit of
the measured value of the register. The object registerUnit is an enum object which has all the supported
units by our generic API. Namely Kw, W, kWh, kvarh, Wh, varh, seconds and none. Some registers has
none unit as boolean registerType does not have a numeric value for a unit. Therefore, none unit is given
for the registerUnit. Each register has only one unit of measured data.

4.4.4.4 open()

The method open() is invoked on a register object to open this register to allow reads and writes over
the register. The method open() is extremely important for writing and reading without invoking the
method before either operations will throw exception as register is not ready for both operations.

4.4.4.5 close()

The method close() is invoked on a register object to close this register after the read or writes in the
system. The close() method can not be invoked on the register object unless it was open and not closed.
Closing a register offers safety for the developer as accidental writes could occur; also keeping the registers
open cause a performance depredation of the gateway.

Design of a Generic API 36

4.4.4.6 read()

One of the most important methods that can be invoked over the register object is the read() method.
The method returns a list of DataStore values.

DataStore is an object that is defined by the generic API, specifically to handle the interoperabil-
ity of the data. The object DataStore is used to describe the details of the measured or abstract value
in the register. DataStore consist of two attributes, an object and a regsiterType. The object represents
the value of a measured or an abstract value. The regsiterType is the type of the data inside the
register explained in Subsection 4.4.4.2. For example, for power consumption the DataStore could be
represented as a value object 220.0 and registerType double. The object attribute of the DataStore can
have a structure value. Structure value represent a new DataStore and the type of this structure value
is STRUCTURE; in other words DataStore can have another DataStore inside it as object which allows
nesting of DataStore.

The read method returns a list of DataStore values, because sometimes there are other data within a
register that are not related to the measured value that need to be returned with the measured value;
these are the abstract values. These values are returned are the scalar unit which is multiplied by the
measured value for calculation of tariff, the time that the register was read, or the last average value of
the current register that we are reading the value from. Therefore, the returned list gives insight to the
developer about the type of register with the measured value along side with some information regarding
the register (such as the last average value or the current average value or the last time the register was
read).

4.4.4.7 getMeter()

The method getMeter() returns a meter object that is explained in Subsection 4.4.3. The relationship
between meters and registers is explained in Figure 4.4.4.7, where register is in one and only one meter
while meter has many registers. The method getMeter() is particularly important when performing
parallel reading on same register number but of different meters, so that each measurement is mapped
to a certain meter which is modeled in our generic API as the meter object.

Figure 4.4: Relationship between Smart Meter and Registers

Design of a Generic API 37

4.4.4.8 readDouble()

The method readDouble() is one of the set of methods that reads the value of register by knowing its
type in advance. For example if the developer is sure that a certain register has double type and call the
method readDouble() over it, it will return a double value of the current measurement that is written
in the register. In case that readDouble() is invoked on a register that does not have double value, an
exception will thrown. With the help of method getRegisterType(), this exception could be avoided as a
developer can check if the value stored in the register is double or not. If the stored value is not double
then the developer can consciously choose the method that fits the data type.

4.4.4.9 readInteger()

The method readInteger() is another method of the set of methods that reads the value of register using
its type. The method readInteger() is similar to method readDouble(), however the difference comes to
the accuracy of the number. For example, if one smart meter uses a different unit convention such as kW,
while another smart meter uses W, this causes the type of the data to change, because kW needs more
accuracy by having a double number instead of an integer. However, the smart meter using W will have
the a register with type integer as it offers enough accuracy. In general developer can run readInteger()
on double variable but it will cause a loss of accuracy which is unacceptable as it affects the billing of
the customer.

4.4.4.10 readBoolean()

Another method for reading the value of register using its type is readBoolean(). readBoolean() is used
to read a true, false data from register. Such registers offers yes or no values to query. An example of
such register "is Fraud" flag register that is flag with either true or false value. Method readBoolean()
can not work with any other data type but boolean, as it casts the yes and no values to true and false
respectively.

4.4.4.11 readLongInteger()

The method readLongInteger() reads the numeric value of the register and casts it to long data type.
The difference between readLongInteger() and readInteger() is that readLongInteger() reads the value up
to 64 bit number while readInteger() reads the value up to 32 bit number. Therefore, if the number is
bigger than 32 bit readLongInteger() should be used over readInteger() as readInteger() will not be able
to store this big number. However, if the number is smaller than 32 bit and readLongIntger() is used,
the number will be cast to long which will not affect the number, but it will occupy more memory as 64
bits are reserved for a smaller number.

Design of a Generic API 38

4.4.4.12 readString()

Another method for reading the value of register using its type is readString(). The method readString()
reads any type of value stored in the register and casts it to string. ReadString() is the most general
method as no matter type of value in register is, it will not throw exception as any type of data can
be casted to string. However if the value is integer in the register and readString() is used, then this
integer value will be stored as an integer, which will not be easy for computation as a number can not
be processed as a string data type.

4.4.4.13 readDate()

The final method for reading the value of register based on its type is readData(). The method readDate()
reads the date value of the register in the form DD.MM.YYYY. In other words the date value represents
the day, month and year stored in a register. One register that use the date data type is the "Date"
register which stores the current date of querying the meter.

4.4.5 Protocol

The protocol object is used to model the protocol used by the meter. Each smart meter has a specific
protocol that is used to initiate and close connections. In addition, it is used to read and write data with
the gateway. In our generic API two protocols are supported. However, the the generic API is scalable and
allow different other protocols to be added to the supported list. In general, the supported protocols are
recorded in the gateway configuration file and can be returned by the method getAllSupportedProtocols()
that can be invoked on gateway object. The two protocols that are supported by our generic API are
DLSM/COSEM and ANSI C12.18. In order to support both protocols two different objects are extended
from protocol object, specifically for each type of protocols. The two objects are VirtualProtocol and
DLMSProtocol. Both protocols have similar objects that it can call. For example, VirtualProtocol
has constant POSITIVE_ACTIVE_ENERGY_TOTAL_ID which is the identifier of the register related to
positive active energy; however the DLMSProtocol has the same POSITIVE_ACTIVE_ENERGY_TOTAL_ID
constant, which has identifier of the register related to positive active energy, but different value than
the VirtualProtocol, as they use different naming conventions.

4.4.5.1 VirtualProtocol

The VirtualProtocol object has the values for the OBIS code convention. Therefore, Virtual-
Protocol is the object that covers the general case, where any protocol that uses OBIS conven-
tion is supported. OBIS offer a distinct identifier for all data within the smart meter, regis-
ter types and register units; therefore our VirtualProtocol contains constants of each register Iden-

Design of a Generic API 39

tifier as name such as POSITIVE_ACTIVE_ENERGY_TOTAL_ID, but it also contain the OBIS units
and types which are also stored in constants such as POSITIVE_ACTIVE_ENERGY_TOTAL_UNIT and
POSITIVE_ACTIVE_ENERGY_TOTAL_TYPE. The constants POSITIVE_ACTIVE_ENERGY_TOTAL_UNIT and
POSITIVE_ACTIVE_ENERGY_TOTAL_TYPE are mapped to the registerUnit data type and registerType data
types respectively.

4.4.5.2 DLMSProtocol

The DLMSProtocol object represents the naming convention and the data types used by the registers in
the smart meter that we used in our experiment that use the DLMS/COSEM protocol; however it does
not use the OBIS code. Like VirtualProtocol, DLMSProtocol has constants that represent the identifier
of the register, the type of register and the register unit. The information regarding this particular meter
which was used in testing, such as its own naming convention was applicable and available by looping
over all registers in the smart meter using the JDLMS library which is explained in Chapter 5. After
looping over the smart meter, we are able to deduce the register name, type and unit and can store them
in constants (similar to VirtualProtocol with the same constants naming convention to ensure unity of
calling methods).

4.4.6 DataStore

DataStore object mentioned in the previous subsections is data structure for storing both data value
measurement and its type. In other words both value and type are encapsulated into one object, which
help the developer to use both variables as one object, this way it abstracts the dependence on type that
is forced by methods, such as readDouble() and readInteger(). An example of dataStore object for power
consumption when running it on the ANSI C12.18 smart meter is [double 230.2] which indicate that the
data object has a double value of 230.2. The data structure data object supports all different register
types that are maintained by the registerType object that was explained earlier.

4.5 Generic API Scenarios

In this section we are going to discuss two different situations that describe legal sequences interaction of
the various operations supported by our generic API. Each situation will describe a situation where the
developer will use the API; also it will describe the sequence of using the methods by a sequence diagram
and by an exact description of using the API methods discussed in the previous sections.

Design of a Generic API 40

4.5.1 Reading Registers

Situation one, described by the sequence diagram at Figure 4.5, is a situation where the data collection
service, modeled as the actor in the sequence diagram, tries to read the positive active energy of a
specific smart meter. The sequence diagram shows the interaction of the data collection service with
each model object, in order to reach the goal intended by the data collection service. The sequence is
arranged in time where some methods calls by the data collection service have returned values while
other methods do not return a value. In the described situation, the data collection service is querying a
ANSI C12.18 smart meter where it uses the OBIS code convention.

The situation starts by the data collection service querying the gateway pool, where all different
gateways exist, by the method getGateway(), which returns the default gateway that is configured
at the configuration file as the default gateway. If there are defined several default gateways in the
gateway pool, the one with least gateway identifier will be returned. Calling the method getGateway()
returns a gateway object to the data collection service. Next the data collection service can invoke the
function getMeter("9963218"), which returns a meter object to the data collection service. The method
getMeter("9963218") in the sequence diagram in Figure 4.5 is communicating with the gateway object
created by owner generic API. The string "9963218" represents the identifier of the meter that the data
collection service wants to read data from. After the meter object has been returned from querying
the gateway, the data collection service applies methods on the returned meter object. The first is
the openConnection() method which is very vital to start data exchange with the smart meter. The
method openConnection() uses some information regarding the protocol used by the smart meter which
is recorded in the configuration file, also the parameters that will be used in the connection are recorded
in the configuration file. In the situation described, the smart meter uses an ANSI C12.18 smart meter
which has a similar protocol and naming convention as the physical smart meter we used for testing.
Parameters such as protocol, client address, port number as well as the writing directory of the smart
meter readings are all recorded in the configuration file and are used to initiate the connection with the
smart meter. After initiating the connection with the smart meter, the data collection service can query
the smart meter with those registers it needs. However, if the connection could not be initiated, an
exception will be thrown; this happens if there is problem with the physical connection with the smart
meter or if there is a huge delay; in general connection problems depend on the method of connection of
the smart meter with the gateway, e.g serial connection or connection similar to TCP/UDP connection.
The method openConnection() is a void method; therefore it did not return any object to the data
collection service.

Design of a Generic API 41

Figure 4.5: Sequence Diagram Describing Reading Registers

Design of a Generic API 42

The data collection service then queries the meter by invoking the method hasRegister("1-0:1.8:0") on
the meter object. The method hasRegister("1-0:1.8:0") checks the smart meter, if the register with the
identifier "1-0:1.8:0" exist within the smart meter. The identifier for the register can be the number in
case it is known for the developer what the number of the register is, or it can use the constants that
are used in the generic API to easily identify the register used. The equivalent of using the register "1-
0:1.8:0" as identifier is POSITIVE_ACTIVE_ENERGY_TOTAL_ID. However, the developer using the generic
API has the freedom to use either the constant or the register number as an identifier. The method
hasRegister("1-0:1.8:0") will return a boolean variable whether the register is found in the gateway or
not. The meter object returns "True", which denotes that the meter has "1-0:1.8:0" register. The data
collection service now is confident that the generic API has the register "1-0:1.8:0", so it can query the
register and be sure that no exception of being not found will be thrown. Next the data collection service
queries the register "1-0:1.8:0" by the method getRegister("1-0:1.8:0"), which returns the register object
that has identifier "1-0:1.8:0". For the data collection service to be able to query the registers it has,
it needs to invoke the open() function on the register, this allows all operations to be performed on
the register. Then the data collection service can invoke functions that check the returned type of the
register, in order to query the register with the appropriate method. Therefore, the data collection service
first call the method isInteger() which checks if the measured read of the register is integer; the method
returns False which means that the value is not integer. Then the data collection service calls function
isDouble(); this returns True which indicates that the measured value according to the convention of the
current smart meter is double. The data collection service can then be sure that the value within the
register is double and can call the appropriate method which is readDouble(). In case the data collection
service called the method readInteger() instead, it will not throw error. However, this will cast the double
value to integer. In other words, calling method readInteger() will return 220 instead of 220.2 which
shows that there is loss of accuracy, which is very crucial for smart meters. The data collection service
then called the function read(), read() is the general method that is called no matter what type of the
register it is. The read() function returns an array list of dataStore values which contains two elements,
the first element is of type structures, that is an object that contains dataStore objects. This represent
the meta data of the object as follows:

1. Integer Value: 0: A boolean value, representing if the register is writable or not, zero denotes the
register is not writable.

2. ENUMERATE Value: 27: Represent the factor for the specific tariff that will be multiples by the
measured number discussed in section.

The final value in the array list is the actual measurement of the register, which is 220.2 the same ex-
act number as the returned value of readDouble(); however the object is encapsulated in dataStore object.

The final two methods called by the data collection service are the closing functions. First, the
data collection service calls the method close() over the register object, in order to close the register
object. Then the data collection service calls the method closeConnection() invoked on the meter object,
which closes the connection between the gateway and the smart meter. Both functions do not return

Design of a Generic API 43

any object; however they are called in order to ensure the safety of the system to prevent accidental
writes, also as the number of connections increase, this adds load to the gateway.

4.5.2 Writing Registers

Another sequence is described in Figure 4.6, where the data collection has the goal of writing or setting
registers in the smart meter. The smart meter, in this example, is of type ANSI C12.18 that uses the
OBIS code convention. The sequence diagram starts with the data collection service as the actor. To
begin with, the data collection service queries the gateway pool by the method getGateway("200"); as
a result the generic API will iterate over all gateways in the pool, but it will not find a gateway in our
configuration file that has the identifier "200", as it does not exist in our system. Therefore, an exception
of gateway "NoTFoundException" will thrown, exceptions are explained in more details in Chapter 5.
The data collection service then call the method getGateway("2") and the gateway object is returned,
as there exist in the gateway pool a gateway with identifier "2".

Next the returned gateway object is queried by the method getAllMetersByProtocol(VirtualProtocol) this
method returns all meters that use the OBIS code convention. As mentioned before, the VirtualProtocol
object indicates any protocol that use the OBIS code convention. The method will iterate over all
meters connected to the gateway with identification "2" and will return all meters that use the OBIS
code convention in a list of meter objects. The data collection service can iterate over all meters objects
or perform get operation to return specific meter. In this sequence situation, the data collection service
will just return the first meter.

Initiating the connection is the first step for the meter object, so we will a open connection on
the selected meter from the meter list returned by the method getAllMetersByProtocol(VirtualProtocol)
in order to start communicating with the smart meter. The openConnection() uses the parameters stored
in the configuration file for initiating connection with the ANSI C12.18 smart meter. After the connection
has been initiated, the data collection service calls hasRegister(POSITIVE_ACTIVE_ENERGY_TOTAL_ID)
in order to check if the register with the identifier POSITIVE_ACTIVE_ENERGY_TOTAL_ID exists in the
smart meter. As shown in the sequence digram, the constant "POSITIVE_ACTIVE_ENERGY_TOTAL_ID"
was used in this sequence situation, unlike the situation one, where the register used was the identifier
by the OBIS itself. Using the constants is particularly useful because of two reasons. First, the developer
does not have to memorize each and every register identification number he can just use the constant
which is self explanatory. The second reason is that because of interoperability issues, different protocols
have different naming convention. Therefore, the constants naming convention helps developers to unify
the calling of registers. For example, a developer can just call POSITIVE_ACTIVE_ENERGY_TOTAL_ID
for any supported protocol in order to get the value of positive active energy total, such as in protocols
like DLMS/COSEM and ANSI C12.18. The returned value of the function is True as the register with
POSITIVE_ACTIVE_ENERGY_TOTAL_ID identifier exists in the smart meter.

Design of a Generic API 44

Figure 4.6: Sequence Diagram Describing Writing Registers

As the data collections service’s goal is to set values in the smart meter, it first calls the method
isWritable(), which checks if the smart meter selected allows writing or not. This is done by checking
the configuration file writable field, which is either true or false variable for each smart meter. In case
it allows writing this means that the meter object can invoke any write method without returning error.

Design of a Generic API 45

This is a particularly useful method, because if the data collection service called any writing method,
such as enableManuaDisconnect() and the meter does not allow writing, then an exception will be thrown
that indicates that the meter does not allow write. Different types of exceptions are explained in more
details in Chapter 5. For situation sequence two, the method isWritable() returns True, so that the data
collection service can call writing methods to the meter object. The data collection service calls the
method enableManualDisconnect(), which enables the user or the owner of the smart meter to turn it
off. The ANSI C12.18 smart meter has a disconnect button which has the symbol [0]. When pressing
this button and the manual disconnect register in the smart meter is activated, then the user can just
disconnect the smart meter by pressing on the button. If the smart already enables the user to manually
disconnect it, then nothing will happen if enablesManualDisconnect() is called, otherwise, the owner of
the smart meter will be able to disconnect it. This is particularly important because the other write
methods called by data collection service need the manual disconnect button to be activated. Next the
data collection service call the method breakerOpen() which turns off the smart meter, so that electricity
does not reach the electric appliance connected to the smart meter. It is important to mention that this
state can also be reached by the owner of the smart meter when he presses the close button, but manual
disconnect should be enabled. Then the data collection service calls the method breakerUnlock() which
unlocks the meter, so that the owner of the meter can turn it on by pressing on the on button. However,
in this situation the data collection service called the method breakerClose() which turned the meter back
on without the owner of the meter pressing on the on button of the smart meter. The different states
that the smart meter can have is presented in figure 4.4.3.12. Finally, the data collection service invoke
the method closeConnection() on the meter object, in order to close connection that was opens by the
data collection service. Closing the connection is done using the parameters that are recorded in the
configuration file.

Java Implementation 46

Chapter 5

Java Implementation

In this chapter we are going to discuss the Java binding to our generic API. In addition, we are going to
explain in detail the implementation of the building blocks of our API, that were described in Chapter
4, of our API and explain details of some methods. Furthermore, we will explain in detail the exception
handling of our system for different cases. Appendix A has the source code of the implementation in this
chapter.

5.1 Classes Implementation

In this section we are going to discuss the different implementations of classes in our system concretely.
We are going to discuss the implementation of each building block on its own, such as the gateway
object, the meter object, the register object and the protocol object.

5.1.1 Gateway

The gateway implementation has two parts, the first part is GatewayFactory, which is responsible for
getting the gateway object from the gateway pool by two methods getGateway(String gatewayID) and
getGateway(), which returns gateway by identifier gatewayID or default gateway object respectively. The
second part is related to the methods that are executed by the gateway object. All gateways objects
implement the gateway interface. The implementation of the methods in the interface of gateway
is developed by loading data related to meters connected to the gateways. This is done by private
method metersFromConfigFile() which creates an array of meters that are connected to the gateway.
The implementation of all of the methods use the array of meters to perform its function. For example,
the method getAllMetersByProtocol(Protocol protocol) iterates through the array of meters, which is
loaded from the configuration file and filters only meters that use the protocol "protocol". Another
method that uses the array of meters is getAllSupportedProtocols() that loops over the array of meters
and adds unique protocols to the array to be returned.

Java Implementation 47

5.1.2 Meter

A meter object has supports those methods that were described in Chapter 4. As described in Chapter 4,
the details about each meter connected to the gateway is recorded in the configuration file. The interface
of the meter object is listed in Appendix A.1.1. Initially when the meter object is created, the it has
parameters which are extracted from the configuration file such as:

• MeterID: Represents the serial number of the meter.

• Protocol: Represents the protocol used by the meter.

• Manufacturer: Represents the manufacturer of the meter.

• Port: Represents the port that is used for connection with the smart meter.

• Location: For ANSI C12.18 smart meter, the reading occurs by calling specific command line
function, location represent the location of the executable.

• Writable: A boolean variable that represents whether the smart meter is writable or not.

• Client Address: Represents the client address that is used for the initial connection with the smart
meter.

• Logic Address: Indicates the logic address of the meter in case the meter can measure more than
one service such as electricity, water and gas.

• Physical Address: Indicates the address of the meter for initial connection with the smart meter
acting as identifier for the connection.

As it is shown in Appendix A.1.2, the MeterFactory has two constructor, one to handle the initialization
of the DLMS/COSEM protocol smart meters and the other to handle the initialization of ANSI C12.18
protocol smart meters. The reason of separating the initialization of each protocol smart meters is that
the parameters that needed to open connection between gateway and DLMS/COSEM smart meter is
different than the parameters that are needed to open connection between gateway and ANSI C12.18
smart meter. Several methods in the MeterFactory are implemented internally in two ways, one to
support the DLMS/COSEM protocol and the other to support the ANSI C12.18 protocol. For example,
the openConnection() method listed in Appendix A.1.3 is divided into two parts depending on the
protocol used. If the method is invoked over a DLMS/COSEM smart meter, then the connection is
initialized using the method and the parameters for DLMS/COSEM connection, otherwise, if the method
is invoked over a ANSI C12.18, smart meter then the internal part related to the implementation of
connecting to an ANSI C12.18 smart meter is executed. This way the method openConnection() could
be used for both DLMS/COSEM smart meters and ANSI C12.18 smart meters without the developer
caring about the underlying protocol connection implementation. In addition, there exist some methods

Java Implementation 48

that have only one internal implementation for both protocols such as getRegister(String registerID)
that returns specific register by its identifier, and getManufacturer() that returns the manufacturer of
the smart meter, described at Appendix A.1.4 and A.1.4.1 respectively.

The write methods described in Chapter 4 is invoked over the meter object. However, the smart
meter used in this project a DLMS/COSEM meter and an ANSI C12.18 meter. The DLMS/COSEM
smart meter does not allow writing, on the other hand the ANSI C12.18 meter allows writing. Meth-
ods like breakerClose() and enableManualDisconnect() listed in Appendix A.1.5 and A.1.6 allow an
ANSI C12.18 meter to write but if it is invoked over a DLMS/COSEM smart meter, an exception
NotWritableMeterException will be thrown. Writing methods that are invoked on the ANSI C12.18
smart meter call batch files such as BreakerClose.bat and EnableManualDisconnect.bat in order to close
the breaker or enable manual disconnect respectively.

5.1.3 Register

As smart meters have registers, the meter object is queried to return specific register or all registers
within the smart meter. The interface implemented object is listed in Appendix A.2.1. RegisterFactory
implements the interface mentioned at Appendix A.2.1. One of the most crucial methods that can be
invoked on the register object is read() method. The method read() returns an ArrayList of DataStore
objects that contains meta data about the register and the measured values. The method read() is
implemented in registerFactory is listed in Appendix A.2.2. The method implementation shows the call
to the bash command line script in case the meter that invokes the method on the register is ANSI
C12.18; otherwise the method uses the JDLMS library, which is discussed in Subsection 5.2.1, in order
to read data from the DLMS/COSEM smart meter which returns an attributesList, which is an ArrayList
of dataStore objects. The variable clientDLMS that is an instance variable of register objects indicates
whether the register is inside a DLMS/COSEM or an ANSI C12.18 smart meter. It is a boolean variable
because a smart meter can be either of type DLMS/COSEM or ANSI C12.18 smart meter but not both.

Another set of methods supported by the register object is reading the object by its value. These
are extremely useful methods in case the developer is sure the type of register used. Because, unlike
dataStore object, these methods do not read the value of the measured value and encapsulate it with
its type and meta data. These methods just return the measured value with the expected type. If the
method that is invoked on the register object reads a different type of object, either there will be a loss
of data or an exception will be thrown. These methods are listed bellow:

• readDouble()

• readInteger()

• readLongInteger()

• readBoolean()

Java Implementation 49

• readString()

For example, the method readDouble() is implemented to return the double value that is measured by
the smart meter stored in the register object. The method is listed in Appendix A.2.3. The method
has two internal implementations, one for DLMS/COSEM reads, while the other one is for the ANSI
C12.18 reads. The DLMS/COSEM part uses the dataStore object described before, to extract the
measured value and cast it to double. In the case of ANSI C12.18, the part of the method related to
reading calls the bash command line script in order to read the measurements; then the method calls
Thread.sleep(18000) in order to sleep the main thread. This is done because reading of register data
takes time, so if the program continues and reads the register value, it will not be updated. In other
words, sleeping the thread give time for the smart meter to update its registers. After the thread is
woken up, the method checks if the value of the register is double; if the register type is not double,
then an exception will be thrown for having an invalid type of the register. The methods readInteger(),
readLongInteger(), readBoolean() and readString() function the same way as readDouble().

Another two classes that were described in Chapter 4 are registerType and registerUnit. The im-
plementation of both classes is an enum that has all different possible values that can be assigned to the
type of register and the unit of register, for example the possible units for register measured values are
Kw, W, kWh, kvarh, Wh and others. The classes registerType and registerUnit are listed in Appendices
A.2.4 and A.2.5 respectively.

5.1.4 Protocol

The protocol type is implemented in our system as an interface; every protocol that is supported by our
generic API should have a class that implements this protocol interface. The protocol interface contains
only one method that is getName() which return the name of each protocol as a string. As mentioned
before, in our experiment, we have used two different smart meters that use two different protocols
namely DLMS/COSEM and ANSI C12.18. The DLMS/COSEM protocol is implemented as an interface
named DLMSProtocol that implements the protocol interface; the DLMSProtocol interface contains all
necessary information related to register identifiers, with their name, as well as the types and units of the
register. The DLMSProtocol implementation is listed in Appendix A.2.6; however only the data of one
register are listed, as listing the entire registers identifier with register type and unit will be very long.
The data related to registers such as register identifiers, units and types was done by iterating on the
COSEM objects in the smart meter using the JDLMS library that is described at section 5.2.1. The second
protocol that is supported by our generic API is ANSI C12.18. The ANSI C12.18 supports the OBIS code
convention. Therefore, we implemented interface VirtualProtocol that extends the protocol interface,
which supports any protocol that uses the OBIS code convention. The interface contains the register
identifiers, unit and type. The OBIS code convention helps VirtualProtocol to support different protocols
without relaying on the underlying specification of the protocols. The interface class of VirtualProtocol
is listed in Appendix A.2.7; however not all registers are shown as it is a very long list of registers. Even
though we are separating the implementation of both protocols, the developer can call a register by
its constant name such as POSITIVE_ACTIVE_ENERGY_TOTAL_ID which will return the positive active

Java Implementation 50

energy total register identifier for both protocols, so that the developer does not care about the underlying
protocol.

5.2 Connection with Smart Meters

In the project we were using two types of smart meters. DLMS/COSEM and ANSI C12.18. In this
section we will describe the method of connecting the smart meters with the gateway and the libraries
used to develop the implementation in Java.

5.2.1 JDLMS

The library JDLMS [26] is a Java library for DLMS/COSEM protocol. JDLMS was used in the project
to initiate a connection, exchange data between gateway and DLMS/COSEM smart meter and close
connection. The JDLMS library contains two stacks client stack and server stack. A client stack is used
to access data within the smart meter, such as registers over TCP/IP or serial communication. The
server stack allows the building of a DLMS/COSEM server which can be appropriately customized. In
this project we used JDLMS for accessing data in the meter using the client stack over serial connection.
The JDLMS library client stack supports the following features.

• Transport: JDLMS support variety of methods for transport. In this project we used HDLC (IEC
62056-46) via serial RS-485.

• Object addressing: JDLMS support logic naming referencing and short referencing. However in
this project we only used short naming referencing as it was only supported by the smart meter
used.

• Authentication mechanisms: JDLMS allow several mechanisms for authentication. However in
this project we used None which indicates no authentication was performed.

• Encryption mechanism: JDLMS support AES-GCM-128 specified in RFC 3394. However in this
project we did not use the encryption mechanism

• Data transfer service: JDLMS supports get, set and action. In this project we used the get data
transfer service to obtain the data at register.

As mentioned before, our generic API uses the JDLMS library in order to initiates connection, exchange
data and close the connection. In order to initiate the connection we defined the class JdlmsClient, The
class JdlmSClient has a constructor that initializes the connection with the DLMS/COSEM smart meter
connected. The constructor for the JdlmsClient class is listed in Appendix A.2.10. The constructor takes
the following arguments:

Java Implementation 51

• UseSerialPort: UsesSerialPort is a boolean that value indicates that the connection use serial
RS-485.

• SerialPort: SerialPort is a string that denotes the serialPort used for the connection.

• Ip: Ip represents the IP address as a string in case the UsesSerialPort is false, which means that
the connection with the meter is TCP/IP not serial RS-485.

• Port: The port number indicates the port used when using TCP/IP connection.

• ClientAdress: ClientAddress is an integer which denotes the client address needed in the connec-
tion. The client address value for each meter should be recorded in the configuration file to enable
the serial connection.

• Password: In case the smart meter needs a password for reading or writing the data, SecuritySuit-
eBuilder is used which is a method created by the JDLMS library for authentication. In case there
is no password then the authentication will not happen and the default security access level will be
imposed.

• LogicalDeviceAddress: Denotes the logical device address which is recorded in the configuration
file per meter.

• PhysicalDeviceAddress: Denotes the physical device address which is recorded in the configura-
tion file per meter.

• IntialzeSnObjects: This is a boolean variable that indicates if there should be a mapping between
the register number and the value it currently has. This is particularly useful when we want to
initiate a connection and read the values in the registers and save them in the map object.

The constructor initiates a connection by a connectionBuilder object, which is defined by the JDLMS
library in order to open a connection with the DLMS/COSEM smart meter. The object connectionBuilder
has methods that append information regarding logical device address, physical device address, client ID
and referencing method. Having these parameters from the constructor enables JDLMS to initiate the
connection.

5.2.2 Bash Command Line Script for ANSI C12.18 Protocol

In the previous section we discussed the JDLMS library which enables us to initiate a connection and
exchange data with DLMS/COSEM smart meters. In this section we will discuss how we were able to
initiate the connection and exchange data between the gateway and the ANSI C12.18 smart meters. In
order to read the register readings we run a bash script. Bash is a command language interpreter; we
use it for reading because binary executable needs to be run that is responsible for communicating with

Java Implementation 52

the smart meter. CmdMeterCommand.exe is the executable that is able to communicate with the ANSI
C12.18 smart meters. The readBillingData.bat is listed Appendix A.2.11, which is the batch script that
is responsible for reading the current values of all registers and write them out to an XML file with the
register identifier and current value of registers.

5.3 Exception Handling

In this section we will explain in detail the implementation of different exceptions that are handled by
our generic API. As discussed in the previous sections, there are several unexpected operations that can
cause exceptions to occur in the system. The generic API defines several check exceptions, which are
used to explicitly show the user of our generic API that the code may cause an error, so developers needs
to be careful when using the method [23]. In addition, the check exception show the user what kind
of exception or error may occur. Those exceptions need to be handled by the user of the generic API [23].

Our generic API implements several exception classes that extends the class Throwable which is
the superclass of all errors and exceptions in the Java language. Each exception class handles specific
errors that may happen while the user of the generic API is using the API. The classes GatewayNot-
FoundException and MeterNotFoundException are listed in Appendices A.2.8 and A.2.9 respectively.
The exception classes supported by our generic API are listed bellow:

• GatewayNotFoundException: GatewayNotFoundException is thrown when getGateway(String
gatewayID) is called and the gateway pool does not contain a gateway whose identifier equals the
gatewayID parameter in the method.

• MeterNotFoundException: MeterNotFoundException is thrown when trying to get or access a
meter that is not connected to the gateway that the method is invoked on. For example, the
exception is thrown, if we run method getMeter(String meterID) and there does not exist a meter
in the configuration file with identifier equals the meterID parameter in the method.

• ConnectionException: ConnectionException happens when there exists an error in the connection
with the smart meter. For example, the exception is thrown when we run the method openConnec-
tion() on a meter object and the invoked meter connection has an error such as when connecting
over serial RS-485 and the physical connection does not exist.

• InValidConfigFileException: InValidConfigFileException is thrown when the data in the config-
uration file are not recorded appropriately according to the convention (as a CSV file where data
are organized in the conventional order specified in Figure 4.3).

• InValidDataTypeException: InValidDataTypeException is thrown when the user calls a read
method that reads register element based on its type such as readDouble() and the register type
is not double. Therefore, an exception should be thrown as there is an inconsistency in the data

Java Implementation 53

types. The user of such methods like readDouble() should be sure that the type of the register is
double, before calling the method.

• NotWritableMeterException: The exception NotWritableMeterException is thrown when trying
to use write methods over a non writable smart meter.

• RegisterNotFoundException: RegisterNotFoundException is thrown when the user tries to get
or access a register with a wrong naming convention, or the register does not exist within the smart
meter.

5.4 Generic API Demonstration

In this section we will describe Java programs that use our developed generic API discussed above. We
demonstrate the methods with both protocols and perform reading and writing operations. We will start
by describing a situation using the DLMS/COSEM smart meter, then we will describe a situation using
ANSI C12.18 smart meter.

5.4.1 DLMS/COSEM Demonstration

In this subsection we will consider that the gateway has a DLMS/COSEM smart meter that is connected
to it. The method described in Listing 5.1, shows a test method namely testDLMS(), for the API which
use DLMS/COSEM protocol. The method begins by getting the default gateway from the gateway pool.
Then using the return gateway it calls method getMeter("96224681") which returns the meter with the
identifier 96224681. Using the configuration file the generic API knows automatically that the meter
with identifier 96224681 uses the DLMS/COSEM protocol. After that it opens the connection using
method openConnection() which initiates the connection using JDLMS library to start data exchange.
Then we query the meter to check if a register with the identification number "1.1.16.7.0.255" exists
in the meter. The meter object returns true as it exists within the meter. Then we check the type
of the register with getRegisterType() which returns a double. The next step is to open the register
with the method open. We can then run the method read() and it will not throw exception because
we are sure that the register with the identifier exists in the system. We call the same read() method
but with "INSTATANEOUS_POWER_ID" as identifier and it returns the same value. The reason is that
the DLMSProtocol has the predefined values of registers, so it maps the identifier "1.1.16.7.0.255"
to "INSTATANEOUS_POWER_ID". Both methods will return an ArrayList of DataStore values which
represent the measured values and types as well as meta data. Moreover, we call method readDouble()
that returns the value of the meter as a double. We are sure that InValidDataTypeException will not be
thrown, because we are sure that the type of the data in register is double.

Java Implementation 54

1 public static void testDLMS() throws GatewayNotFoundException, Exception,

↪→ InValidConfigFileException,

2 MeterNotFoundException, ConnectionException, InValidDataTypeException {

3 Gateway gateway = GatewayFactory.getGateway();

4 Meter meter = gateway.getMeter("96224681");

5 meter.openConnection();

6 System.out.println(meter.hasRegister("1.1.16.7.0.255"));

7 System.out.println(meter.getRegister("1.1.16.7.0.255").getRegisterType());

8 meter.getRegister("1.1.16.7.0.255").open();

9 System.out.println(meter.getRegister("1.1.16.7.0.255").read());

10 System.out.println(meter.getRegister(DLMSProtocol.INSTANTANEOUS_POWER_ID).read()

↪→);

11 System.out.println(meter.getRegister("1.1.16.7.0.255").readDouble());

12 meter.getRegister("1.1.16.7.0.255").close();

13 meter.closeConnection();

14 }

Listing 5.1: testDLMS() Method Implementation

5.4.2 ANSI C12.18 Demonstration

In this subsection we will consider that the default gateway has an ANSI C12.18 smart meter that is
connected to it. The method described in Listing 5.2 shows a test method namely testANSI() for the
API which uses the ANSI C12.18 protocol. The method starts with getting the default gateway from
the gateway pool as we did in Subsection 5.4.1. We invoke the method getMeter("UB126001034") on
the default gateway object where the parameter "UB126001034" defines the serial number of the ANSI
C12.18 meter. The generic API will recognizes the smart meter with identifier "UB126001034" as ANSI
C12.18 smart meter, as it is recorded in the configuration file. The connection will be opened with
the smart meter using openConnection() that will use the bash script to start the connection with the
smart meter. Then we will get the first register in the smart meter using the method getAllRegisters()
that returns the list of all registers in the order of there occurrences in the OBIS code. We will then
print the read value of the register knowing that it has the type double. Moreover, We will get the
register with the identification POSITIVE_ACTIVE_ENERGY_TOTAL_ID, to get the register that measures
the positive active energy total. We invoke the method read on the register object which returns an
ArrayList of DataStore objects which contain the measured value of the register as well as the type
of the register. The next method invoked on the register object is getRegisterUnit() that returns the
unit watt. Then we call getRegisterID() and getMeter().getMeterID() to get the identifier of both the
register and of the smart meter that contains the register respectively. In addition, for the ANSI C12.18
we can perform write operation, therefore we check at the beginning if the meter is writable by invoking
the method isWritable() on the meter object. It returns true, so we can call a write method such as
breakerClose(). If the meter was not writable, we would have received NotWritableMeterException, that

Java Implementation 55

is the reason why we did the isWritable() check first. Another register that we query the meter about
is "pulseInputChannelOneTotal", that returns register. We used the returned register object to get its
type. The returned type of the register is none because the "pulseInputChannelOneTotal" does not have
specific type. Finally we iterate over all registers in the meter and we outputted each register identifier
followed by the its type. The final two invoked methods close any open register and close the connection
at the end.

1 public static void testANSI() throws GatewayNotFoundException, Exception,

↪→ InValidConfigFileException,

2 MeterNotFoundException, NotWritableMeterException, InValidDataTypeException,

↪→ ConnectionException {

3 Gateway gateway = GatewayFactory.getGateway();

4 Meter meter = gateway.getMeter("UBI26001034");

5 meter.openConnection();

6 meter.getAllRegisters().get(0).open();

7 System.out.println(meter.getAllRegisters().get(0).readDouble());

8 Regsiter register = meter.getRegister(VirtualProtocol.

↪→ POSITIVE_ACTIVE_ENERGY_TOTAL_ID).open();

9 System.out.println(register.read());

10 System.out.println(register.getRegisterUnit()); //W

11 System.out.println(register.getRegisterID()); //"1-0:1.8.0"

12 System.out.println(register.getMeter().getMeterID()); //"UBI26001034"

13

14 if (meter.isWritable()) {

15 meter.breakerClose(); // close breaker

16 }

17 System.out.println(meter.getRegister("pulseInputChannelOneTotal").getRegisterType

↪→ ());//RegisterUnit.none

18

19 // printing register id and register type

20 for (int i = 0; i < meter.getAllRegisters().size(); i++) {

21 System.out.println(meter.getAllRegisters().get(i).getRegisterID() + "␣" + meter.

↪→ getAllRegisters().get(i).getRegisterType());

22 }

23

24 meter.getAllRegisters().get(0).close();

25 meter.closeConnection();

26 }

Listing 5.2: testANSI() Method Implementation

Conclusion 56

Chapter 6

Conclusion

6.1 Summary

The main focus of the current thesis was developing a generic API that can interpret the features of
protocols, which are used by different smart meters and IoT applications, in a common API that can be
used to communicate directly with a cloud provider or the data collection service without knowing the
underlying implementation details. The first part of the thesis included researching and documenting the
state-of-the-art in the area of smart meters, IoT application and how gateways can be used to overcome
the interoperability issues. Interoperability is the ability for a system to exchange data with other system
and the interface for communication is understood by both sides. The interoperability issues that face
smart meters and IoT applications are different underlaying protocols used for communication, different
naming conventions, different data types of information and different units for recording the data. In
addition we have documented and researched the specification of each of the protocols used in the
project namely DLMS/COSEM and ANSI C12.18. Then we were able to design and implement the
generic API that developers can use in order to exchange data with any of the smart meters with a
general approach without developer thinking about what is the protocol used by the smart meter.

In this project we were able to develop a generic API that overcomes the interoperability challenge
in smart meters and IoT applications in general. We were able to describe the API in abstract way,
also we gave several sequences situation for using the API. After describing the API in abstract way we
described the binding of our API to Java programming language. By describing the Java binding we
explained the building blocks of the API using Java language. The main building blocks for our generic
API were Gateway, Meter, Register and protocol. We were able to develop other objects to overcome
the interoperability challenge such as registerUnit, registerType, dataStore objects. The result was an
implementation of the specification of each protocol in the DLMSProtocol for the DLMS/COSEM smart
meter and a VirtualProtocol that covers any meter that used OBIS code which supports ANSI C12.18.

Conclusion 57

6.2 Future Work

The solution and the research work started in this master thesis can be further on continued in several
directions. To begin with, as our generic API was tested only with smart meters, the generic API can be
extended with the same concepts in order to support other IoT devices. There are wide varieties of IoT
devices that the generic API can be extended to support. For example, machines in factory can have
an "on field" gateway device where the generic API converts the API using machines communication
protocols such as the MQTT protocol. Therefore another protocol that can be easily supported by our
system in the future is the MQTT protocol, which is widely used in many applications.

One of the challenges we faced in this project is that the performance of the API was not good
in terms of reading. For example for the ANSI C12.18 smart meter we need to sleep the main thread in
order to wait for the new value read which is not optimum. Therefore, another future direction of research
can be headed towards the development of new algorithms that ensure not only optimum time and mem-
ory complexity of the generic API; as these algorithms will be used by developers, these must at least offer
the same time complexity as working with the protocol natively, i.e. as if working without the generic API.

The subject of the interoperability challenge in IoT application and specifically smart meters is
currently a hot topic, as the number of IoT devices have increased drastically and also smart meters
are more and more used world wide. Therefore, the topic of how to address the arising interoperability
challenges remains an open area of research.

Appendices

Java Classes 59

Appendix A

Java Classes

In this appendix we will show the implementation of different Java classes and methods used by our
generic API system.

A.1 Meter Class Implementation

A.1.1 Meter Interface

1 package meter;

2

3 import java.io.IOException;

4 import java.util.ArrayList;

5

6 import exceptions.NotWritableMeterException;

7 import exceptions.RegisterNotFoundException;

8 import protocol.Protocol;

9 import register.Register;

10

11 public interface Meter {

12

13 public ArrayList<Register> getAllRegisters();

14

15 public String getManufacturer();

16

17 public Protocol getProtocol();

18

19 public Register getRegister(String registerID) throws RegisterNotFoundException;

20

21 public String getMeterID();

Java Classes 60

22

23 public boolean hasRegister(String registerID);

24

25 public void openConnection() throws Exception;

26

27 public void closeConnection() throws IOException;

28

29 public boolean isWritable();

30

31 public void breakerClose() throws IOException, NotWritableMeterException;

32

33 public void breakerOpen() throws IOException, NotWritableMeterException;

34

35 public void breakerUnlock() throws IOException, NotWritableMeterException;

36

37 public void disableManualDisconnect() throws IOException,

↪→ NotWritableMeterException;

38

39 public void enableManualDisconnect() throws IOException,

↪→ NotWritableMeterException;

40

41 }

A.1.2 MeterFactory Constructor

1 // several constructors for different protocols

2 public MeterFactory(String protocol, String meterID, String manufacurer, String

↪→ port, String clientAdress,

3 String logicAdress, String physicalAdress, String writable) throws Exception

↪→ {

4 this.manufacurer = manufacurer;

5 if (protocol.equals("DLMSCOSEM")) {

6 this.protocol = new DLMSProtocolFactory();

7 }

8

9 this.meterID = meterID;

10 this.clientAdress = Integer.parseInt(clientAdress);

11 this.logicAdress = Integer.parseInt(logicAdress);

12 this.physicalAdress = Integer.parseInt(physicalAdress.charAt(0) + "");

13 this.port = port;

14 this.writable = writable.equals("true") ? true : false;

15 }

Java Classes 61

16

17 // constructor for ansi smart meters

18 public MeterFactory(String protocol, String meterID, String manufacurer, String

↪→ port, String location,

19 String writable) throws IOException, IllegalArgumentException,

↪→ IllegalAccessException {

20 this.meterID = meterID;

21 this.writable = writable.contains("true") ? true : false;

22 this.manufacurer = manufacurer;

23 this.port = port;

24 this.protocol = new VirtualProtocolFactory(protocol);

25 this.location = location;

26 }

A.1.3 openConnection() Method Implementation

1 // DLMS/COSEM => opening connection and reading the registers definitions

2 public void openConnection() throws Exception {

3 if (protocol instanceof DLMSProtocol) {

4 client = new JDlmsSampleClient(true, port, null, null, clientAdress, null,

↪→ logicAdress, physicalAdress,

5 false);

6 for (String shortName : client.getShortNames()) {

7 Meter m = new MeterFactory("DLMS/COSEM", meterID, manufacurer, port,

↪→ clientAdress + "",

8 logicAdress + "", physicalAdress + "", writable + "");

9 registersList.add(new RegisterFactory(shortName, m, client));

10 }

11 }

12

13 // if protocol is virtualProtocol then it use OBIS and will have the

14 // registerName from xml

15 if (protocol instanceof VirtualProtocol) {

16 File file = new File(location + "/results/result4.xml");

17 DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.

↪→ newInstance();

18 DocumentBuilder documentBuilder = documentBuilderFactory.newDocumentBuilder()

↪→ ;

19 Document document = (Document) documentBuilder.parse(file);

20 NodeList nList = document.getElementsByTagName("measurement");

21

22 for (int i = 0; i < nList.getLength(); i++) {

Java Classes 62

23 if (!nList.item(i).getParentNode().getParentNode().getNodeName().equals("

↪→ adhocRead")) {

24 break;

25 }

26 Node n = nList.item(i);

27 Element e = (Element) n;

28 Meter m = new MeterFactory("ANSI", meterID, manufacurer, port, location,

↪→ writable + "");

29 registersList

30 .add(new RegisterFactory(e.getAttribute("registerName"), m, location, e

↪→ .getAttribute("unit")));

31 }

32

33 }

34

35 }

A.1.4 getManufacturer() Method Implementation

1 @Override

2 public String getManufacturer() {

3 return manufacurer;

4 }

A.1.4.1 getRegister(String registerID) Method Implementation

1 @Override

2 public Register getRegister(String registerID) throws RegisterNotFoundException

↪→ {

3 for (Register register : registersList) {

4 if (register.getRegisterID().equals(registerID)) {

5 return register;

6 }

7 }

8 throw new RegisterNotFoundException("RegisterID␣is␣not␣found");

9 }

A.1.5 breakerClose()) Method Implementation

Java Classes 63

1 @Override

2 public void breakerClose() throws IOException, NotWritableMeterException {

3 if (!writable) {

4 throw new NotWritableMeterException("Meter␣doesn’t␣authorize␣write");

5 }

6 Runtime.getRuntime().exec("cmd␣/c␣start␣\"\"␣" + location + "/BreakerClose.bat"

↪→);

7

8 }

A.1.6 enableManualDisconnect() Method Implementation

1 @Override

2 public void enableManualDisconnect() throws IOException,

↪→ NotWritableMeterException {

3 if (!writable) {

4 throw new NotWritableMeterException("Meter␣doesn’t␣authorize␣write");

5 }

6 Runtime.getRuntime().exec("cmd␣/c␣start␣\"\"␣" + location + "/

↪→ EnableManualDisconnect.bat");

7

8 }

A.2 Register Class Implementation

A.2.1 Register Interface

1 package register;

2

3 import java.io.IOException;

4 import java.util.ArrayList;

5

6 import javax.xml.parsers.ParserConfigurationException;

7

8 import org.openmuc.jdlms.datatypes.DataObject;

9 import org.xml.sax.SAXException;

10

11 import exceptions.ConnectionException;

12 import exceptions.InValidDataTypeException;

Java Classes 64

13 import meter.Meter;

14

15 public interface Register {

16

17 public String getRegisterID();

18

19 public RegisterType getRegisterType() throws IOException;

20

21 public RegisterUnit getRegisterUnit();

22

23 public void open() throws ConnectionException, IOException, InterruptedException

↪→ ;

24

25 public void close() throws ConnectionException;

26

27 // changed register value to dataObject to make it retrun dataObject which is

↪→ general of DLMS/COSEM

28 public ArrayList<DataObject> read() throws ConnectionException, IOException,

↪→ ParserConfigurationException, SAXException, InterruptedException;

29

30 public Meter getMeter();

31

32 public double timeReads() throws IOException;

33

34 public double readDouble() throws IOException, InValidDataTypeException,

↪→ InterruptedException;

35

36 public Integer readInteger() throws IOException, InValidDataTypeException,

↪→ ParserConfigurationException, SAXException, InterruptedException;

37

38 public boolean readBoolean() throws IOException, InValidDataTypeException,

↪→ InterruptedException;

39

40 public long readLongInteger() throws IOException, InValidDataTypeException,

↪→ InterruptedException;

41

42 public String readString() throws IOException, InValidDataTypeException;

43

44

45

46 }

Java Classes 65

A.2.2 read() Method Implementation

1 // returns arrayList of dataObject, in case of DLMS/COSEM could be structure

2 // In case of Ansi returns one value which is the value of the read in

3 @Override

4 public ArrayList<DataStore> read()

5 throws ConnectionException, IOException, ParserConfigurationException,

↪→ SAXException, InterruptedException {

6 if (clientDLMS != null) {

7 return attributesList;

8 }

9 Thread.sleep(18000);

10 Runtime.getRuntime().exec("cmd␣/c␣start␣\"\"␣" + location + "/ReadBillingData.

↪→ bat");

11 ArrayList<DataStore> ansiValue = new ArrayList<DataStore>();

12 ansiValue.add(getRegisterValueANSI());

A.2.3 readDouble() Method Implementation

1 @Override

2 public double readDouble() throws IOException, InValidDataTypeException,

↪→ InterruptedException {

3 if (clientDLMS != null) {

4 for (DataObject attribute : attributesList) {

5 if (attribute.getType().toString().contains("DOUBLE")) {

6 return new Double(attribute.getRawValue().toString());

7 }

8 }

9 } else {

10 Runtime.getRuntime().exec("cmd␣/c␣start␣\"\"␣" + location + "/ReadBillingData

↪→ .bat");

11 Thread.sleep(18000);

12 try {

13 if (this.getRegisterType().toString().equals("Double")) {

14 return new Double((Double) getRegisterValueANSI().getRawValue());

15 }

16 } catch (Exception e) {

17 e.printStackTrace();

18 }

19 }

20 throw new InValidDataTypeException("The␣register␣doesn’t␣contain␣double␣value")

↪→ ;

Java Classes 66

21 }

A.2.4 RegisterType Class Implementation

1 package register;

2

3 /*

4 * Type returned by the registers

5 *

6 */

7 public enum RegisterType {

8 String, Integer, Double, Boolean, Long;

9 }

A.2.5 RegisterUnit Class Implementation

1 package register;

2

3 /*

4 * Possible unites returned by registers;

5 */

6 public enum RegisterUnit {

7

8 Kw, W, kWh, kvarh, Wh, varh, none, seconds;

9 }

A.2.6 DLMSProtocol Interface Implementation

1 package protocol;

2

3 import register.RegisterType;

4 import register.RegisterUnit;

5

6 public interface DLMSProtocol extends Protocol {

7 // constants related to DLMS/COSEM that doesn’t follow the OBIS code

8

9 public static final String INSTANTANEOUS_POWER_ID = "1.1.16.7.0.255";

10 public static final RegisterUnit INSTANTANEOUS_POWER_UNIT = RegisterUnit.W;

Java Classes 67

11 public static final RegisterType INSTANTANEOUS_POWER_TYPE = RegisterType.Integer

↪→ ;

12

13 }

A.2.7 VirtualProtocol Interface Implementation

1 package protocol;

2

3 import register.RegisterType;

4 import register.RegisterUnit;

5

6 // implementation of general protocol handling

7 public interface VirtualProtocol extends Protocol {

8

9 // OBIS standard constants

10 public static final String POSITIVE_ACTIVE_ENERGY_TOTAL_ID = "1-0:1.8.0";

11 public static final RegisterUnit POSITIVE_ACTIVE_ENERGY_TOTAL_UNIT =

↪→ RegisterUnit.kWh;

12 public static final RegisterType POSITIVE_ACTIVE_ENERGY_TOTAL_TYPE =

↪→ RegisterType.Double;

13

14 public static final String POSITIVE_ACTIVE_ENERGY_TOTAL_ID_T1 = "1-0:1.8.1";

15 public static final RegisterUnit POSITIVE_ACTIVE_ENERGY_TOTAL_UNIT_T1 =

↪→ RegisterUnit.kWh;

16 public static final RegisterType POSITIVE_ACTIVE_ENERGY_TOTAL_TYPE_T1 =

↪→ RegisterType.Double;

17

18 public static final String POSITIVE_ACTIVE_ENERGY_TOTAL_ID_T2 = "1-0:1.8.2";

19 public static final RegisterUnit POSITIVE_ACTIVE_ENERGY_TOTAL_UNIT_T2 =

↪→ RegisterUnit.kWh;

20 public static final RegisterType POSITIVE_ACTIVE_ENERGY_TOTAL_TYPE_T2 =

↪→ RegisterType.Double;

21

22 public static final String POSITIVE_ACTIVE_ENERGY_TOTAL_ID_T3 = "1-0:1.8.3";

23 public static final RegisterUnit POSITIVE_ACTIVE_ENERGY_TOTAL_UNIT_T3 =

↪→ RegisterUnit.kWh;

24 public static final RegisterType POSITIVE_ACTIVE_ENERGY_TOTAL_TYPE_T3 =

↪→ RegisterType.Double;

25

26 public static final String POSITIVE_ACTIVE_ENERGY_TOTAL_ID_T4 = "1-0:1.8.4";

Java Classes 68

27 public static final RegisterUnit POSITIVE_ACTIVE_ENERGY_TOTAL_UNIT_T4 =

↪→ RegisterUnit.kWh;

28 public static final RegisterType POSITIVE_ACTIVE_ENERGY_TOTAL_TYPE_T4 =

↪→ RegisterType.Double;

29

30 public static final String NEGETIVE_ACTIVE_ENERGY_TOTAL_ID = "1-0:2.8.0";

31 public static final RegisterUnit NEGETIVE_ACTIVE_ENERGY_TOTAL_ID_UNIT =

↪→ RegisterUnit.kvarh;

32 public static final RegisterType NEGETIVE_ACTIVE_ENERGY_TOTAL_ID_TYPE =

↪→ RegisterType.Integer;

33

34 public static final String ABSOLUTE_ACTIVE_ENERGY_TOTAL_ID = "1-0:15.8.0";

35 public static final RegisterUnit ABSOLUTE_ACTIVE_ENERGY_TOTAL_UNIT =

↪→ RegisterUnit.kWh;

36 public static final RegisterType ABSOLUTE_ACTIVE_ENERGY_TOTAL_TYPE =

↪→ RegisterType.Double;

37

38 public static final String POSITIVE_REACTIVE_ENERGY_TOTAL_ID = "1-0:3.8.0";

39 public static final RegisterUnit POSITIVE_REACTIVE_ENERGY_TOTAL_UNIT =

↪→ RegisterUnit.kvarh;

40 public static final RegisterType POSITIVE_REACTIVE_ENERGY_TOTAL_TYPE =

↪→ RegisterType.Double;

41

42

43 public static final String POWER_OUTAGE_DURATION_ID = "powerOutageDurationTotal"

↪→ ;

44 public static final RegisterUnit POWER_OUTAGE_DURATION_UNIT = RegisterUnit.

↪→ seconds;

45 public static final RegisterType POWER_OUTAGE_DURATION_TYPE = RegisterType.Long;

46

47

48 public static final String PULSE_INPUT_CHANNEL_ONE_TOTAL_ID = "

↪→ pulseInputChannelOneTotal";

49 public static final RegisterUnit PULSE_INPUT_CHANNEL_ONE_TOTAL_UNIT =

↪→ RegisterUnit.none;

50 public static final RegisterType PULSE_INPUT_CHANNEL_ONE_TOTAL_TYPE =

↪→ RegisterType.Boolean;

51 }

A.2.8 GatewayNotFoundException Class Implementation

1 package exceptions;

Java Classes 69

2

3 public class GatewayNotFoundException extends Throwable {

4

5 public GatewayNotFoundException(Exception e) {

6 super(e.getMessage());

7 }

8 }

A.2.9 MeterNotFoundException Class Implementation

1 package exceptions;

2

3 public class MeterNotFoundException extends Throwable {

4

5 public MeterNotFoundException(String s) {

6 super(s);

7 }

8 }

A.2.10 JDLMSClient Constructor Implementation

1 public JdlmsClient(boolean useSerialPort, String serialPort, String ip, Integer

↪→ port, Integer clientAddress,

2 String password, Integer logicalDeviceAddress, Integer physicalDeviceAddress,

↪→ boolean initializeSnObjects)

3 throws Exception {

4 this.initializeSnObjects = initializeSnObjects;

5 if (useSerialPort) {

6 SerialConnectionBuilder serialConnectionBuilder = new SerialConnectionBuilder(

↪→ serialPort);

7 connectionBuilder = serialConnectionBuilder;

8 serialConnectionBuilder.setBaudRateChangeTime(300);

9 serialConnectionBuilder.enableHandshake();

10 serialConnectionBuilder.setBaudRate(2400);

11 } else {

12 InetAddress inetAddress = InetAddress.getByName(ip);

13 TcpConnectionBuilder tcpConnectionBuilder = new TcpConnectionBuilder(

↪→ inetAddress);

14 connectionBuilder = tcpConnectionBuilder;

15 tcpConnectionBuilder.setPort(port);

Java Classes 70

16 tcpConnectionBuilder.useHdlc();

17 tcpConnectionBuilder.setRawMessageListener(new RawMessageListener() {

18 public void messageCaptured(RawMessageData paramRawMessageData) {

19 logger.trace("Received␣raw␣message␣with␣" + "\n\t␣Source␣" +

↪→ paramRawMessageData.getMessageSource()

20 + "\n\t␣Message␣"

21 + (paramRawMessageData.getMessage() != null

22 ? HexConverter.toHexString(paramRawMessageData.getMessage())

23 : null)

24 + "\n\t␣APDU␣" + paramRawMessageData.getApdu());

25 }

26 });

27 }

28 connectionBuilder.setClientId(clientAddress);

29 connectionBuilder.setLogicalDeviceId(logicalDeviceAddress);

30 connectionBuilder.setPhysicalDeviceAddress(physicalDeviceAddress);

31 connectionBuilder.setReferencingMethod(ReferencingMethod.SHORT);

32 // connectionBuilder.setReferencingMethod(ReferencingMethod.LOGICAL);

33 connectionBuilder.setResponseTimeout(60000);

34 if (password != null) {

35 SecuritySuiteBuilder securityBuilder = SecuritySuite.builder();

36 securityBuilder.setAuthenticationMechanism(AuthenticationMechanism.LOW);

37 securityBuilder.setPassword(password.getBytes(StandardCharsets.US_ASCII));

38 SecuritySuite securitySuite = securityBuilder.build();

39 connectionBuilder.setSecuritySuite(securitySuite);

40 }

41 // if SnOjbectMapping is not set it is retrieved when first accessing snObjects

42 if (initializeSnObjects) {

43 // ATTENTION: The subsequent mapping is only true for SWiBi L&G E650

44 Map<ObisCode, SnObjectInfo> snObjectMapping = new LinkedHashMap<ObisCode,

↪→ SnObjectInfo>();

45 // put 6000 instead of 7392

46 SnObjectInfo value = new SnObjectInfo(7392, 3, 0);

47 ObisCode key = new ObisCode("1.1.1.8.0.255");

48 snObjectMapping.put(key, value);

49 value = new SnObjectInfo(2992, 3, 0);

50 key = new ObisCode("1.1.1.8.1.255");

51 snObjectMapping.put(key, value);

52 value = new SnObjectInfo(3160, 3, 0);

53 key = new ObisCode("1.1.1.8.2.255");

54 snObjectMapping.put(key, value);

55 value = new SnObjectInfo(11200, 8, 0);

56 key = new ObisCode("0.0.1.0.0.255");

Java Classes 71

57 snObjectMapping.put(key, value);

58 connectionBuilder.setSnObjectMapping(snObjectMapping);

59 }

60 }

A.2.11 Batch script for Reading Meter Billing Data

1 @ECHO OFF

2 ECHO ***********************

3 ECHO Read Meter Billing Data

4 ECHO ***********************

5 ECHO -

6 CALL "%~dp0.\COMPORTS.BAT"

7 CALL "%~dp0.\IMPORT.BAT"

8 SET PCALL="%~dp0..\Tools\CallMDU.exe"

9 SET SCRIPT="%~dp0.\scripts\BillingData.bat"

10 %PCALL% %SCRIPT% %IMPORT% %COMPORTS%

11 IF errorlevel 1 GOTO End

12 cd "%~dp0.\results\"

13 del␣result*.xml␣>nul␣2>&1

14 ren␣result*.txt␣result*.xml

15 :End

16 PAUSE

Abbreviations 72

Abbreviations

IoT Internet of Things

API Application Programming Interface

REST Representational State Transfer

XML eXtensible Markup Language

CSV Comma-separated Values

DLMS Device Language Message specification

COSEM COmpanion Specification for Energy Metering

ANSI American National Standards Institute

OBIS OBject Identification System

AP Application Process

AL Application Layer

ACSE Application Control Service Element

ASO Application Service Object

Bibliography 73

Bibliography

[1] Company Profile . http://www.snt.at/about_us/company/company-profile.en.php. Accessed:
2018-03-10.

[2] List of Standard OBIS Codes and COSEM Objects . https://www.dlms.com/documentation/
listofstandardobiscodesandmaintenanceproces/index.html. Accessed: 2018-06-24.

[3] OBIS Names, What are They? . https://www.dlms.com/faqanswers/
questionsonthedlmscosemspecification/obisnameswhatarethey.php. Accessed: 2018-06-24.

[4] Smart Grids and Meters . https://ec.europa.eu/energy/en/topics/markets-and-consumers/
smart-grids-and-meters. Accessed: 2018-06-24.

[5] Support additional protocols for IoT Hub. https://docs.microsoft.com/en-us/azure/iot-hub/
iot-hub-protocol-gateway. Accessed: 2018-02-10.

[6] The DLMS Communication Survival Kit. https://icube.ch/DLMSSurvivalKit/dsk1.html. Accessed:
2018-02-15.

[7] Amazon. Amazon Web Services (AWS). https://aws.amazon.com/. Accessed: 18/05/2018.

[8] American National Standards Institute. American National Standard For Utility Industry
End Device Data Tables . Tech. rep., National Electrical Manufacturers Association , 2009.

[9] Companion Specification for Energy Metering . Dlms/cosem architecture and protocols.
Tech. rep., DLMS/COSEM, 2007.

[10] Eoghan McKenna, Ian Richardson, M. T. Smart meter data: Balancing consumer privacy
concerns with legitimate applications. Energy Policy 41, 10 (2012), 807–814.

[11] Federal Energy Regulatory Commission . Assessment of Demand Response and Advanced
Metering . Tech. rep., Federal Energy Regulatory Commission, 2008.

[12] Google. Google Cloud. https://cloud.google.com/. Accessed: 18/05/2018.

http://www.snt.at/about_us/company/company-profile.en.php
 https://www.dlms.com/documentation/listofstandardobiscodesandmaintenanceproces/index.html
 https://www.dlms.com/documentation/listofstandardobiscodesandmaintenanceproces/index.html
 https://www.dlms.com/faqanswers/questionsonthedlmscosemspecification/obisnameswhatarethey.php
 https://www.dlms.com/faqanswers/questionsonthedlmscosemspecification/obisnameswhatarethey.php
 https://ec.europa.eu/energy/en/topics/markets-and-consumers/smart-grids-and-meters
 https://ec.europa.eu/energy/en/topics/markets-and-consumers/smart-grids-and-meters
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-protocol-gateway
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-protocol-gateway
https://icube.ch/DLMSSurvivalKit/dsk1.html
https://aws.amazon.com/
https://cloud.google.com/

Bibliography 74

[13] Gurux. Dlms/cosem meters. https://www.gurux.fi/DLMSCOSEMFAQ. Accessed: 10/04/2018.

[14] Haseeb, S., Hashim, A. H. A., Khalifa, O. O., and Ismail, A. F. Connectivity, interop-
erability and manageability challenges in internet of things. AIP Conference Proceedings 1883, 1
(2017), 020004.

[15] Hoefling, M., Heimgaertner, F., Fuchs, D., and Menth, M. JOSEF: A Java-Based
Open-Source Smart Meter Gateway Experimentation Framework. In Proceedings of the 4th D-
A-CH Conference on Energy Informatics - Volume 9424 (New York, NY, USA, 2015), EI 2015,
Springer-Verlag New York, Inc., pp. 165–176.

[16] IBM. IBM Watson. https://www.ibm.com/watson/. Accessed: 18/05/2018.

[17] International, S. E. DLMS / COSEM for Smart Metering. https://www.metering.com/
top-stories/dlms-cosem-for-smart-metering/. Accessed: 21/05/2018.

[18] International, S. E. Exploring ANSI Standards in Meter Communications. https://www.
metering.com/regional-news/north-america/exploring-ansi-standards-in-meter-communications/.
Accessed: 22/05/2018.

[19] Janardhana, S., and Shashikala, M. S. D. Challenges of Smart Meter Systems. In 2016
International Conference on Electrical, Electronics, Communication, Computer and Optimization
Techniques (ICEECCOT) (Dec 2016), pp. 78–82.

[20] Kursawe, K., and Peters, C. Structural Weaknesses in the Open Smart Grid Protocol. In
2015 10th International Conference on Availability, Reliability and Security (Aug 2015), pp. 1–10.

[21] Kursawe, K., and Peters, C. Structural weaknesses in the open smart grid protocol. Cryptology
ePrint Archive, Report 2015/088, 2015. https://eprint.iacr.org/2015/088.

[22] Mar, W. IoT Hub Service on Microsoft Azure. https://wilsonmar.github.io/iot-hub/, 2017.

[23] Markham, N. Java Programming Interviews Exposed. EBL-Schweitzer. Wiley, 2014.

[24] Microsoft. Azure IoT Hub. https://azure.microsoft.com/en-us/services/iot-hub/. Accessed:
01/07/2018.

[25] Microsoft. Microsoft Azure. https://azure.microsoft.com/en-us/. Accessed: 13/05/2018.

[26] openmuc. JDLMS Overview. https://www.openmuc.org/dlms-cosem/, 2013.

[27] OSGP. Open Smart Grid Protocol. http://www.osgp.org/en. Accessed: 18/05/2018.

https://www.gurux.fi/DLMSCOSEMFAQ
https://www.ibm.com/watson/
https://www.metering.com/top-stories/dlms-cosem-for-smart-metering/
https://www.metering.com/top-stories/dlms-cosem-for-smart-metering/
https://www.metering.com/regional-news/north-america/exploring-ansi-standards-in-meter-communications/
https://www.metering.com/regional-news/north-america/exploring-ansi-standards-in-meter-communications/
https://eprint.iacr.org/2015/088
https://wilsonmar.github.io/iot-hub/
https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/en-us/
https://www.openmuc.org/dlms-cosem/
http://www.osgp.org/en

Bibliography 75

[28] Saleh, M. S., Althaibani, A., Esa, Y., Mhandi, Y., and Mohamed, A. A. Impact
of Clustering Microgrids on their Stability and Resilience during Blackouts. In 2015 International
Conference on Smart Grid and Clean Energy Technologies (ICSGCE) (Oct 2015), pp. 195–200.

[29] Snyder, A. F., and Stuber, M. T. G. The ANSI C12 Protocol Suite - Updated and Now with
Network Capabilities. In 2007 Power Systems Conference: Advanced Metering, Protection, Control,
Communication, and Distributed Resources (March 2007), pp. 117–122.

[30] S&T. Supplier of Systems Featuring Proprietary Technologies. http://www.snt.at/index.en.php.
Accessed: 10/05/2018.

[31] user association, D. How is DLMS/COSEM Different from Other Standards. https://
www.dlms.com/faqanswers/generalquestions/howisdlmscosemdifferentfromotherstandards.php. Ac-
cessed: 13/05/2018.

[32] user association, D. What are the Benefits of DLMS/COSEM. http://www.dlms.com/
faqanswers/generalquestions/whatarethebenefitsofdlmscosem.php. Accessed: 13/05/2018.

[33] user association, D. What is COSEM? http://www.dlms.com/faqanswers/generalquestions/
whatiscosem.php. Accessed: 03/05/2018.

[34] Wang, J., and Leung, V. C. M. A Survey of Technical Requirements and Consumer Application
Standards for IP-based Smart Grid AMI Network. In The International Conference on Information
Networking 2011 (ICOIN2011) (Jan 2011), pp. 114–119.

[35] Watson, I. Watson IoT Platform Gateway Capabilities Now Gen-
erally Available. https://developer.ibm.com/iotplatform/2016/04/04/
watson-iot-platform-gateway-capabilities-now-generally-available/. Accessed: 02/07/2018.

[36] Weiss, M., Helfenstein, A., Mattern, F., and Staake, T. Leveraging Smart Meter Data
to Recognize Home Appliances. In 2012 IEEE International Conference on Pervasive Computing and
Communications (March 2012), pp. 190–197.

[37] Zhang, X. M., and Zhang, N. An Open, Secure and Flexible Platform Based on Internet of
Things and Cloud Computing for Ambient Aiding Living and Telemedicine. In 2011 International
Conference on Computer and Management (CAMAN) (May 2011), pp. 1–4.

[38] Zhu, Q., Wang, R., Chen, Q., Liu, Y., and Qin, W. IOT Gateway: BridgingWireless Sensor
Networks into Internet of Things. In 2010 IEEE/IFIP International Conference on Embedded and
Ubiquitous Computing (Dec 2010), pp. 347–352.

http://www.snt.at/index.en.php
https://www.dlms.com/faqanswers/generalquestions/howisdlmscosemdifferentfromotherstandards.php
https://www.dlms.com/faqanswers/generalquestions/howisdlmscosemdifferentfromotherstandards.php
http://www.dlms.com/faqanswers/generalquestions/whatarethebenefitsofdlmscosem.php
http://www.dlms.com/faqanswers/generalquestions/whatarethebenefitsofdlmscosem.php
http://www.dlms.com/faqanswers/generalquestions/whatiscosem.php
http://www.dlms.com/faqanswers/generalquestions/whatiscosem.php
https://developer.ibm.com/iotplatform/2016/04/04/watson-iot-platform-gateway-capabilities-now-generally-available/
https://developer.ibm.com/iotplatform/2016/04/04/watson-iot-platform-gateway-capabilities-now-generally-available/

Ramez Elbaroudy
Julius-Raab-Straße 10, 4040 Linz, Austria

 ramezemadaiesec@gmail.com  Github  +43 664 9729107

PERSONAL DETAILS
○␣ Date of Birth: January 01, 1995
○␣ Place of Birth: Cairo, Egypt
○␣ Nationality: Egyptian

EXPERIENCE
Super Eddy Berlin, Germany
Software Engineer Intern July 2016 - September 2016
○␣ Developed a user tracking application for Admin-side tracking, using Node.js and Express.js.
Unplugged web Cairo, Egypt
Software Engineer Intern July 2015 - August 2015
○␣ Developed a web application using PHP(Laravel) for the backend of the application.
German university in Cairo Cairo, Egypt
Junior Teaching Assistant February 2015 - February 2016
○␣ Taught labs of four courses including introduction to computer science and data structures and algorithms.

PROJECTS
GratefulReminder April 2018 - May 2018

○␣ Android app that reminds you with the things you are grateful for in random times.
○␣ Technologies used are RxJava 2, Dagger, Room Persistence Library, Mockito.
○␣ Implemented using MVP design pattern and test-driven development process.
Codeforces solution explained April 2018 - June 2018

○␣ A collection of Codeforces solutions with explanation implemented in Java and Python.
Pervasive smart-watch application December 2017 – February 2018
○␣ Android app that collects data using accelerometer sensor of smart watch.
○␣ Using K nearest neighbor to classify whether user is walking, standing or sitting.
○␣ Determine the status of the room by analyzing the context of other users activities.

EDUCATION
Johannes Kepler University Linz, Austria
M.S. in Computer Science September 2017 - July 2018
German University in Cairo Cairo, Egypt
B.Sc. in Computer science and Engineering. September 2012 - July 2017
Cumulative Grade: Excellent. GPA: 1.5 (German Scale)
University of Rostock Rostock, Germany
B.Sc project and thesis. Thesis Grade: Excellent March 2016–June 2016

ACTIVITIES
○␣ Participated in ACM Egyptian Collegiate Programming Contest 2014 and 2015.
○␣ Team leader of outgoing volunteer team in, non-profit organization, AIESEC in GUC, Cairo 2017.

Bibliography 76

Languages and Technologies
Expert: Java, Python, Git, Android; Prior Experience: JavaScript, SQL, HTML/CSS, Rails

Spoken languages
Arabic (Native); English (Fluent); German (very good)

Bibliography 77

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und ohne fremde Hilfe ver-
fasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die wörtlich oder inhaltlich
entnommenen Stellen deutlich als solche kenntlich gemacht habe.

Linz, Juli 2018 Ramez Elbaroudy

	1 Introduction
	2 Related Work
	2.1 Context of the Problem
	2.1.1 Smart Meters Advantages
	2.1.2 Challenges in the Smart Meters Industry
	2.1.3 Interoperability Challenge
	2.1.4 Protocols Diversity
	2.1.4.1 Naming Conventions Diversity
	2.1.4.2 Data Types Diversity
	2.1.4.3 Units Diversity

	2.1.5 S&T

	2.2 State of the Art
	2.2.1 In Research
	2.2.2 In Industry
	2.2.2.1 Azure IoT Protocol Gateway

	3 Analysis of Protocols
	3.1 The DLMS/COSEM Protocol
	3.2 The DLMS/COSEM Application Layer
	3.3 The ANSI C12.18 Protocol
	3.4 The ANSI 12.18 Application Layer
	3.5 Comparison between DLMS/CSOM and ANSI C12.18
	3.5.1 DLMS/COSEM
	3.5.2 ANSI C12.18

	4 Design of a Generic API
	4.1 Communication between Data Collection Service and Smart Meters
	4.2 Interoperability Challenges in Smart Meters
	4.3 Gateway Design
	4.4 The API Specification
	4.4.1 Gateway Data Type
	4.4.1.1 getGateway(string gatewayID)
	4.4.1.2 getGateway()

	4.4.2 Gateway Methods
	4.4.2.1 getMeter(string meterID)
	4.4.2.2 getAllMeters()
	4.4.2.3 getAllMetersByProtocol(Protocol protocol)
	4.4.2.4 getAllSupportedProtocols()
	4.4.2.5 getGatewayID()

	4.4.3 Meter Methods
	4.4.3.1 getAllRegisters()
	4.4.3.2 getManufacturer()
	4.4.3.3 getProtocol()
	4.4.3.4 getRegister(string registerID)
	4.4.3.5 getMeterID()
	4.4.3.6 hasRegister(string registerID)
	4.4.3.7 openConnection()
	4.4.3.8 closeConnection()
	4.4.3.9 isWritable()
	4.4.3.10 disableManualDisconnect()
	4.4.3.11 enableManualDisconnect()
	4.4.3.12 breakerClose()
	4.4.3.13 breakerOpen()
	4.4.3.14 breakerUnlock()

	4.4.4 Register Methods
	4.4.4.1 getRegisterID()
	4.4.4.2 getRegisterType()
	4.4.4.3 getRegisterUnit()
	4.4.4.4 open()
	4.4.4.5 close()
	4.4.4.6 read()
	4.4.4.7 getMeter()
	4.4.4.8 readDouble()
	4.4.4.9 readInteger()
	4.4.4.10 readBoolean()
	4.4.4.11 readLongInteger()
	4.4.4.12 readString()
	4.4.4.13 readDate()

	4.4.5 Protocol
	4.4.5.1 VirtualProtocol
	4.4.5.2 DLMSProtocol

	4.4.6 DataStore

	4.5 Generic API Scenarios
	4.5.1 Reading Registers
	4.5.2 Writing Registers

	5 Java Implementation
	5.1 Classes Implementation
	5.1.1 Gateway
	5.1.2 Meter
	5.1.3 Register
	5.1.4 Protocol

	5.2 Connection with Smart Meters
	5.2.1 JDLMS
	5.2.2 Bash Command Line Script for ANSI C12.18 Protocol

	5.3 Exception Handling
	5.4 Generic API Demonstration
	5.4.1 DLMS/COSEM Demonstration
	5.4.2 ANSI C12.18 Demonstration

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	Appendices
	A Java Classes
	A.1 Meter Class Implementation
	A.1.1 Meter Interface
	A.1.2 MeterFactory Constructor
	A.1.3 openConnection() Method Implementation
	A.1.4 getManufacturer() Method Implementation
	A.1.4.1 getRegister(String registerID) Method Implementation

	A.1.5 breakerClose()) Method Implementation
	A.1.6 enableManualDisconnect() Method Implementation

	A.2 Register Class Implementation
	A.2.1 Register Interface
	A.2.2 read() Method Implementation
	A.2.3 readDouble() Method Implementation
	A.2.4 RegisterType Class Implementation
	A.2.5 RegisterUnit Class Implementation
	A.2.6 DLMSProtocol Interface Implementation
	A.2.7 VirtualProtocol Interface Implementation
	A.2.8 GatewayNotFoundException Class Implementation
	A.2.9 MeterNotFoundException Class Implementation
	A.2.10 JDLMSClient Constructor Implementation
	A.2.11 Batch script for Reading Meter Billing Data

	Bibliography

